4 research outputs found

    Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation

    No full text
    [11C]PBR28, a radioligand targeting the translocator protein (TSPO), does not produce a specific binding signal in approximately 14% of healthy volunteers. This phenomenon has not been reported for [11C]PK11195, another TSPO radioligand. We measured the specific binding signals with [3H]PK11195 and [3H]PBR28 in brain tissue from 22 donors. Overall, 23% of the samples did not generate a visually detectable specific autoradiographic signal with [3H]PBR28, although all samples showed [3H]PK11195 binding. There was a marked reduction in the affinity of [3H]PBR28 for TSPO in samples with no visible [3H]PBR28 autoradiographic signal (Ki=188±15.6 nmol/L), relative to those showing normal signal (Ki=3.4±0.5 nmol/L, P<0.001). Of this latter group, [3H]PBR28 bound with a two-site fit in 40% of cases, with affinities (Ki) of 4.0±2.4 nmol/L (high-affinity site) and 313±77 nmol/L (low-affinity site). There was no difference in Kd or Bmax for [3H]PK11195 in samples showing no [3H]PBR28 autoradiographic signal relative to those showing normal [3H]PBR28 autoradiographic signal. [3H]PK11195 bound with a single site for all samples. The existence of three different binding patterns with PBR28 (high-affinity binding (46%), low-affinity binding (23%), and two-site binding (31%)) suggests that a reduction in [11C]PBR28 binding may not be interpreted simply as a reduction in TSPO density. The functional significance of differences in binding characteristics warrants further investigation

    Evaluation of Intraperitoneal [18F]-FDOPA Administration for Micro-PET Imaging in Mice and Assessment of the Effect of Subchronic Ketamine Dosing on Dopamine Synthesis Capacity

    No full text
    Positron emission tomography (PET) using the radiotracer [18F]-FDOPA provides a tool for studying brain dopamine synthesis capacity in animals and humans. We have previously standardised a micro-PET methodology in mice by intravenously administering [18F]-FDOPA via jugular vein cannulation and assessment of striatal dopamine synthesis capacity, indexed as the influx rate constant KiMod of [18F]-FDOPA, using an extended graphical Patlak analysis with the cerebellum as a reference region. This enables a direct comparison between preclinical and clinical output values. However, chronic intravenous catheters are technically difficult to maintain for longitudinal studies. Hence, in this study, intraperitoneal administration of [18F]-FDOPA was evaluated as a less-invasive alternative that facilitates longitudinal imaging. Our experiments comprised the following assessments: (i) comparison of [18F]-FDOPA uptake between intravenous and intraperitoneal radiotracer administration and optimisation of the time window used for extended Patlak analysis, (ii) comparison of KiMod in a within-subject design of both administration routes, (iii) test-retest evaluation of KiMod in a within-subject design of intraperitoneal radiotracer administration, and (iv) validation of KiMod estimates by comparing the two administration routes in a mouse model of hyperdopaminergia induced by subchronic ketamine. Our results demonstrate that intraperitoneal [18F]-FDOPA administration resulted in good brain uptake, with no significant effect of administration route on KiMod estimates (intraperitoneal: 0.024±0.0047 min−1, intravenous: 0.022±0.0041 min−1, p=0.42) and similar coefficient of variation (intraperitoneal: 19.6%; intravenous: 18.4%). The technique had a moderate test-retest validity (intraclass correlation coefficient ICC=0.52, N=6) and thus supports longitudinal studies. Following subchronic ketamine administration, elevated KiMod as compared to control condition was measured with a large effect size for both methods (intraperitoneal: Cohen’s d=1.3; intravenous: Cohen’s d=0.9), providing further evidence that ketamine has lasting effects on the dopamine system, which could contribute to its therapeutic actions and/or abuse liability
    corecore