4,043 research outputs found

    Enzymatic dyeing and functional finishing of textile fibres with ferulic acid

    Get PDF
    The catalyzed polymerization of ferulic acid (FA) by laccase from Rhus vernicifera has been studied, and its polymeric products are used for the dyeing and functional finishing of silk, wool, nylon, viscose and cotton fabrics by two methods, namely simultaneous enzymatic polymerization of FA and dyeing at 50 oC (one-step method), and enzymatic polymerization of FA at 50 oC followed by dyeing at 90 oC (two-step method). The analyses of UV-Visible and FTIR spectra show the formation of yellow poly(ferulic acid) (PFA) in which FA units are mainly linked together with C–C bonds. The colouration of PFA on fabrics occurs due to physical adsorption, and not because of interaction of covalent bond between PFA and fibres. The enzymatically dyed fabrics display yellow to orange colour hues, and pale to moderate colour depth, depending on fibre species and dyeing methods. The dyed fabrics show excellent rub fastness and staining fastness during washing, relatively weak light fastness and colour change fastness during washing; the two-step method shows better wash fastness ratings for colour change. The enzymatic dyeing of FA provides fabrics with multifunctional properties of antioxidant activity, UV-protection and deodorization

    Ferulic acid promoted in-situ generation of AgNPs@silk as functional colorants

    Get PDF
    A rapid, green and simple procedure for the in-situ generation of AgNPs@silk as functional colorant is described herein. Silver (Ag+) ions were first diffused into the silk fabric matrix by soaking into aqueous AgNO3 solution, subsequently, alcoholic solution of ferulic acid, a natural polyphenol, was added as an eco-friendly reductant for the generation of AgNPs@silk. The formation of AgNPs was confirmed by visible color changes and UV–visible absorption spectra. The residual AgNPs solution was characterized via UV–visible spectroscopy, TEM and DLS. The UV–visible spectra and TEM analyses confirmed the formation of more or less spherical well-dispersed AgNPs. The AgNPs@silk was characterized by SEM, EDS, XRD, XPS and FTIR. The Ag content of AgNPs@silk was determined by nitric acid digestion followed by ICP-OES. The color, antibacterial and UV protection characteristics of AgNPs@silk were also evaluated. AgNPs@silk produced a beautiful color pallete ranging from light creamish brown to dark golden brown. The AgNPs treated silk exhibited outstanding antibacterial activity (>99% bacterial reduction) and excellent laundering durability, where it inhibited >94% of E. coli even after 10 washing cycles. Moreover, AgNPs@silk was highly effective blocking of UV radiation in both UVA and UVB regions, and thus offered excellent UV protection

    Identification of CmACL genes in melon and analysis of their potential functions in fruit sugar and acid accumulation

    Get PDF
    Citric acid is the most important organic acid in melon and has a great influence on fruit flavor quality. ATP-citrate (pro-S) lyase (ACL) is a key regulator in the acetyl-CoA pathway and plays an important role in citric acid metabolism. In this study we analyzed the structure and phylogenetics of CmACL genes and their functions in sugar and acid accumulation in melon. A total of four CmACL genes were identified in the melon genome, and phylogenetic analysis assigned these genes into the α subfamily (CmACLα1 and CmACLα2) and the β subfamily (CmACLβ1 and CmACLβ2). Conserved motif and gene structure analyses showed that members of the same subfamily shared identical conserved motifs and gene structures, and probably have similar biological functions. Analysis of cis-acting elements revealed that CmACL promoter sequences contained regulatory elements related to light, stress, phytohormones, and growth and development, indicating that CmACL genes may be involved in melon growth and stress responses. The prediction of protein interaction network showed that CmACL proteins were closely related to the proteins belonging to tricarboxylic acid cycle, glyoxylic acid cycle and glycolytic pathway, suggesting that CmACL proteins may play an important role in sugar and acid metabolism. The expression of CmACLβ1 was significantly and positively correlated with sucrose content, and CmACLβ2 expression was significantly positively correlated with citric acid content, suggesting that CmACLβ1 and CmACLβ2 have important roles in sugar and acid accumulation in melon. Our results offer novel insights and avenues for the regulation of sugar and acid levels in melon and provide a theoretical foundation for breeding high-quality melon cultivars

    Experimental Test of Tracking the King Problem

    Full text link
    In quantum theory, the retrodiction problem is not as clear as its classical counterpart because of the uncertainty principle of quantum mechanics. In classical physics, the measurement outcomes of the present state can be used directly for predicting the future events and inferring the past events which is known as retrodiction. However, as a probabilistic theory, quantum-mechanical retrodiction is a nontrivial problem that has been investigated for a long time, of which the Mean King Problem is one of the most extensively studied issues. Here, we present the first experimental test of a variant of the Mean King Problem, which has a more stringent regulation and is termed "Tracking the King". We demonstrate that Alice, by harnessing the shared entanglement and controlled-not gate, can successfully retrodict the choice of King's measurement without knowing any measurement outcome. Our results also provide a counterintuitive quantum communication to deliver information hidden in the choice of measurement.Comment: 16 pages, 5 figures, 2 table

    Image Formation Model Guided Deep Image Super-Resolution

    Full text link
    We present a simple and effective image super-resolution algorithm that imposes an image formation constraint on the deep neural networks via pixel substitution. The proposed algorithm first uses a deep neural network to estimate intermediate high-resolution images, blurs the intermediate images using known blur kernels, and then substitutes values of the pixels at the un-decimated positions with those of the corresponding pixels from the low-resolution images. The output of the pixel substitution process strictly satisfies the image formation model and is further refined by the same deep neural network in a cascaded manner. The proposed framework is trained in an end-to-end fashion and can work with existing feed-forward deep neural networks for super-resolution and converges fast in practice. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods.Comment: AAAI 2020. The training code and models are available at https://github.com/jspan/PHYSICS S

    Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores

    Get PDF
    Acknowledgements This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (No. 2019QZKK0501), the Joint Grant from Chinese Academy of Sciences–People's Government of Qinghai Province on Sanjiangyuan National Park (LHZX-2020-01), the prevention and control techniques and demonstration of rodent pest in degraded alpine degraded grassland of Plateau pasture (2023YFD1400101), and the project of western light for interdisciplinary teams.Peer reviewedPublisher PD

    Molecular Optical Imaging with Radioactive Probes

    Get PDF
    Background: Optical imaging (OI) techniques such as bioluminescence and fluorescence imaging have been widely used to track diseases in a non-invasive manner within living subjects. These techniques generally require bioluminescent and fluorescent probes. Here we demonstrate the feasibility of using radioactive probes for in vivo molecular OI. Methodology/Principal Findings: By taking the advantages of low energy window of light (1.2–3.1 eV, 400–1000 nm) resulting from radiation, radionuclides that emit charged particles such as b + and b 2 can be successfully imaged with an OI instrument. In vivo optical images can be obtained for several radioactive probes including 2-deoxy-2- [ 18 F]fluoro-D-glucos

    Suppression of Black-body Radiation Induced Zeeman Shifts in the Optical Clocks due to the Fine-structure Intramanifold Resonances

    Full text link
    The roles of the fine-structure intramanifold resonances to the Zeeman shifts caused by the blackbody radiation (BBRz shifts) in the optical clock transitions are analyzed. The clock frequency measurement in the 1S03P0^1S_0-^3P_0 clock transition of the singly charged aluminium ion (Al+^+) has already been reached the 101910^{-19} level at which the BBRz effect can be significant in determining the uncertainty. In view of this, we probe first the BBRz shift in this transition rigorously and demonstrate the importance of the contributions from the intramanifold resonances explicitly. To carry out the analysis, we determine the dynamic magnetic dipole (M1) polarizabilities of the clock states over a wide range of angular frequencies by employing two variants of relativistic many-body methods. This showed the BBRz shift is highly suppressed due to blue-detuning of the BBR spectrum to the 3P03P1^3P_0-^3P_1 fine-structure intramanifold resonance in Al+^+ and it fails to follow the usually assumed static M1 polarizability limit in the estimation of the BBRz shift. The resonance also leads to a reversal behavior of the temperature dependence and a cancellation in the shift. After learning this behavior, we extended our analyses to other optical clocks and found that these shifts are of the order of micro-hertz leading to fractional shifts in the clock transitions at the 102010^{-20} level or below

    Gut microbiota-testis axis: FMT improves systemic and testicular micro-environment to increase semen quality in type 1 diabetes

    Get PDF
    Background Clinical data suggest that male reproductive dysfunction especially infertility is a critical issue for type 1 diabetic patient (T1D) because most of them are at the reproductive age. Gut dysbiosis is involved in T1D related male infertility. However, the improved gut microbiota can be used to boost spermatogenesis and male fertility in T1D remains incompletely understood. Methods T1D was established in ICR (CD1) mice with streptozotocin. Alginate oligosaccharide (AOS) improved gut microbiota (fecal microbiota transplantation (FMT) from AOS improved gut microbiota; A10-FMT) was transplanted into the T1D mice by oral administration. Semen quality, gut microbiota, blood metabolism, liver, and spleen tissues were determined to investigate the beneficial effects of A10-FMT on spermatogenesis and underlying mechanisms. Results We found that A10-FMT significantly decreased blood glucose and glycogen, and increased semen quality in streptozotocin-induced T1D subjects. A10-FMT improved T1D-disturbed gut microbiota, especially the increase in small intestinal lactobacillus, and blood and testicular metabolome to produce n-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to ameliorate spermatogenesis and semen quality. Moreover, A10-FMT can improve spleen and liver functions to strengthen the systemic environment for sperm development. FMT from gut microbiota of control animals (Con-FMT) produced some beneficial effects; however, to a smaller extent. Conclusions AOS-improved gut microbiota (specific microbes) may serve as a novel, promising therapeutic approach for the improvement of semen quality and male fertility in T1D patients via gut microbiota-testis axis
    corecore