91 research outputs found

    Projecting future impacts of cropland reclamation policies on carbon storage

    Get PDF
    Cropland reclamation policies result in carbon storage loss by the conversion of natural land. However, the future impacts of cropland reclamation policies (CRP) on carbon storage have seldom been explored. Taking Hubei, China as study area, this study assesses the impacts of cropland reclamation policies before and after optimization on carbon storage from 2010 to 2030. The LAND System Cellular Automata model for Potential Effects (LANDSCAPE) was used to simulate the land use patterns in 2030, while the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) Carbon Storage and Sequestration model was applied to calculate the changes in carbon storage. Results indicate that carbon storage loss due to cropland reclamation policies is expected to increase from 0.48 Tg·C to 4.34 Tg·C between 2010 and 2030 in Hubei. This increase is related to the loss of wetland and forest. Carbon storage loss can be reduced by 52%–73% by protecting carbon-rich lands. This study highlights the importance of considering the carbon storage loss when implementing cropland reclamation policies

    Codon Optimization for Alpha 1-Antitrypsin Disease

    Get PDF
    Alpha 1-antitrypsin deficiency is a genetic disorder caused by defective production of alpha 1-antitrypsin (AAT). Gene therapy approaches have been conducted in patients with AAT deficiency with successful AAT expression, but not to the therapeutic levels required to reduce the risk of emphysema. Codon optimization, a somewhat new and evolving technique, is used by many scientists to maximize protein expression in living organisms by altering translational and transcriptional efficiency as well as protein refolding. The purpose of this study was to develop single stranded and double stranded AAT gene constructs, test their protein expression in vitro, and compare with those levels expressed by the AAT construct that is currently in clinical trials. Three constructs were to be developed, yet only one construct was successfully cloned. This clone, optimized ds-CB-AAT, illustrated increased AAT protein expression as the transfection time increased. However, protein levels were appreciably lower in the optimized construct compared to the single stranded (long intron) AAT construct that is currently being administered in clinical trials. The data did not suggest that the optimized AAT construct does in fact express more AAT protein in vitro as expected. In order to achieve data that can be reproduced, the 2 remaining constructs need to be cloned and all of the isolated plasmid DNA should be prepared on the same scale to minimize any additional confounding variables

    Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges

    Get PDF
    Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes

    rAAV9 airway delivery results in effective knockdown of mutant alpha 1-antitrypsin in the liver while upregulating wildtype alpha 1-antitrypsin in the lung

    Get PDF
    Alpha 1-Antitrypsin (AAT) deficiency is a human genetic disease resulting in the production of mutant AAT, a hepatocyte produced serine protease inhibitor that functions to prevent alveolar epithelial damage by inhibiting neutrophil elastase. Patients with AAT deficiency have increased lung disease, due to decreased proteolytic protection, as well as sporadic severe liver disease secondary to accumulation of mutant AAT, especially a common mutant form termed PiZ, within hepatocytes. We previously showed, in a PiZ mutant mouse model, simultaneous knock-down of mutant PiZ-AAT and augmentation of wild-type AAT production through intravenous delivery of a recombinant adeno-associated viral (rAAV) vector encoding both a miRNA targeting PiZ-AAT and a miRNA-resistant wild-type AAT gene. In this study we tested the hypothesis that rAAV2/9 vector administered intra-nasally or intra-tracheally can deliver a gene of interest to both the airways and liver. Initially C57Bl/6 mice were administered intra-nasally 1011 genome copies (GC) of rAAV2/9 vector expressing a firefly luciferase, which resulted in increased luminescence in the nasal passages, liver, and lung 21 days post delivery. Next, 1012 GC of rAAV2/9 vector expressing GFP and miRNAs targeting PiZ-AAT were delivered via oro-tracheal intubation to PiZ mice. This resulted in decreased serum AAT levels in the PiZ mice and GFP expression in both the liver and lungs. Finally, 1012 GC of rAAV2/9 vector encoding miRNA resistant wild-type AAT and miRNAs targeting PiZ-AAT were delivered via oro-tracheal intubation. This resulted in both systemic and local (liver and lung) elevations in wild-type AAT as well as decreased PiZ-AAT levels. In conclusion, tracheal delivery of rAAV2/9 resulted in expression of AAT in the liver and lung of treated animals, with sufficient targeting of the liver to mediate knock-down of mutant AAT to a similar degree as intravenous delivery, representing a potential non-invasive delivery route for gene therapy in AAT deficient patients

    Two-Plasmid Packaging System for Recombinant Adeno-Associated Virus

    Get PDF
    A number of packaging systems are available for production of recombinant adeno-associated virus vectors (rAAVs). Among these, the use of a two-plasmid cotransfection system, in which Rep and Cap genes and Ad helper genes are on the same plasmid, has not been frequently employed for good manufacturing practices (GMP) production, even though it presents some practical advantages over the common three-plasmid (triple) transfection method. To confirm and expand the utility of the two-plasmid system, we generated GMP-compatible versions of this system and used those package reporter genes in multiple capsid variants in direct comparison with triple transfection. Vector yields, purity, and empty-to-full ratios were comparable between double and triple transfection methods for all capsid variants tested. We performed an in vivo side-by-side comparison of double and triple transfection vectors following both intravenous injection and intramuscular injection in mice. Expression and transduction were evaluated in muscle and liver 4 weeks after injection. Additional studies of bioactivity were conducted in vivo using packaged vectors carrying a variety of cargos, including the therapeutic transgene, microRNA, and single- or double-stranded vector. Results showed that cargos packaged using double transfection were equivalently bioactive to those packaged using a triple transfection system. In conclusion, these data suggest the utility of midrange (1E12-1E16) GMP-compatible packaging of adeno-associated virus (AAV) vectors for several AAV capsids

    Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting

    Get PDF
    The bandgap engineering of semiconductors, in particular low‐cost organic/polymeric photocatalysts could directly influence their behavior in visible photon harvesting. However, an effective and rational pathway to stepwise change of the bandgap of an organic/polymeric photocatalyst is still very challenging. An efficient strategy is demonstrated to tailor the bandgap from 2.7 eV to 1.9 eV of organic photocatalysts by carefully manipulating the linker/terminal atoms in the chains via innovatively designed polymerization. These polymers work in a stable and efficient manner for both H2 and O2 evolution at ambient conditions (420 nm < λ < 710 nm), exhibiting up to 18 times higher hydrogen evolution rate (HER) than a reference photocatalyst g‐C3N4 and leading to high apparent quantum yields (AQYs) of 8.6%/2.5% at 420/500 nm, respectively. For the oxygen evolution rate (OER), the optimal polymer shows 19 times higher activity compared to g‐C3N4 with excellent AQYs of 4.3%/1.0% at 420/500 nm. Both theoretical modeling and spectroscopic results indicate that such remarkable enhancement is due to the increased light harvesting and improved charge separation. This strategy thus paves a novel avenue to fabricate highly efficient organic/polymeric photocatalysts with precisely tunable operation windows and enhanced charge separation

    In situ Observation of Sodium Dendrite Growth and Concurrent Mechanical Property Measurements Using an Environmental Transmission Electron Microscopy–Atomic Force Microscopy (ETEM-AFM) Platform

    Get PDF
    Akin to Li, Na deposits in a dendritic form to cause a short circuit in Na metal batteries. However, the growth mechanisms and related mechanical properties of Na dendrites remain largely unknown. Here we report real-time characterizations of Na dendrite growth with concurrent mechanical property measurements using an environmental transmission electron microscopy–atomic force microscopy (ETEM-AFM) platform. In situ electrochemical plating produces Na deposits stabilized with a thin Na2CO3 surface layer (referred to as Na dendrites). These Na dendrites have characteristic dimensions of a few hundred nanometers and exhibit different morphologies, including nanorods, polyhedral nanocrystals, and nanospheres. In situ mechanical measurements show that the compressive and tensile strengths of Na dendrites with a Na2CO3 surface layer vary from 36 to >203 MPa, which are much larger than those of bulk Na. In situ growth of Na dendrites under the combined overpotential and mechanical confinement can generate high stress in these Na deposits. These results provide new baseline data on the electrochemical and mechanical behavior of Na dendrites, which have implications for the development of Na metal batteries toward practical energy-storage applications
    • 

    corecore