46 research outputs found

    Deterministic single-photon source in the ultrastrong coupling regime

    Full text link
    Deterministic single-photon sources are important and ubiquitous in quantum information protocols. However, to the best of our knowledge, none of them work in the ultrastrong light-matter coupling regime, and each excitation process can only emit one photon. We propose a deterministic single-photon source in circuit QED which can work in the ultrastrong coupling regime. Here, two qubits are excited simultaneously in one process and two deterministic single photons can be sequentially emitted with an arbitrary time separation. This happens through two consecutive adiabatic transfers along the one-photon solutions of the two-qubit Rabi and Jaynes-Cummings model, which has constant eigenenergy in the whole coupling regime. Unlike the stimulated Raman adiabatic passage, the system goes back to the initial state of another period automatically after photon emission. Our scheme can approach unity single-photon efficiency, indistinguishability, and purity simultaneously. With the assistance of the Stark shift, a deterministic single photon can be generated within a time proportional to the inverse of the resonator frequency.Comment: 7 +4 pages, 5 figure

    One-Photon Solutions to the Multiqubit Multimode Quantum Rabi Model for Fast W -State Generation

    Get PDF
    General solutions to the quantum Rabi model involve subspaces with an unbounded number of photons. However, for the multiqubit multimode case, we find special solutions with at most one photon for an arbitrary number of qubits and photon modes. Such solutions exist for arbitrary single qubit-photon coupling strength with constant eigenenergy, while still being qubit-photon entangled states. Taking advantage of their peculiarities and the reach of the ultrastrong coupling regime, we propose an adiabatic scheme for the fast and deterministic generation of a two-qubit Bell state and arbitrary single-photon multimode W states with nonadiabatic error less than 1%. Finally, we propose a superconducting circuit design to catch and release the W states, and shows the experimental feasibility of the multimode multiqubit quantum Rabi model.PGC2018-095113-B-I00, PID2019-104002GB-C21 and PID2019-104002GB-C22 (MCIU/AEI/FEDER, UE

    One-photon Solutions to Multiqubit Multimode quantum Rabi model

    Get PDF
    General solutions to the quantum Rabi model involve subspaces with unbounded number of photons. However, for the multiqubit multimode case, we find special solutions with at most one photon for arbitrary number of qubits and photon modes. Unlike the Juddian solution, ours exists for arbitrary single qubit-photon coupling strength with constant eigenenergy. This corresponds to a horizontal line in the spectrum, while still being a qubit-photon entangled state. As a possible application, we propose an adiabatic scheme for the fast generation of arbitrary single-photon multimode W states with nonadiabatic error less than 1%. Finally, we propose a superconducting circuit design, showing the experimental feasibility of the multimode multiqubit Rabi model.Comment: 6 pages, 5 figures plus Supplemental Material

    OvoAMtht from Methyloversatilis thermotolerans ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities

    Get PDF
    Mononuclear non-heme iron enzymes are a large class of enzymes catalyzing a wide-range of reactions. In this work, we report that a non-heme iron enzyme in Methyloversatilis thermotolerans, OvoAMtht, has two different activities, as a thiol oxygenase and a sulfoxide synthase. When cysteine is presented as the only substrate, OvoAMtht is a thiol oxygenase. In the presence of both histidine and cysteine as substrates, OvoAMtht catalyzes the oxidative coupling between histidine and cysteine (a sulfoxide synthase). Additionally, we demonstrate that both substrates and the active site iron's secondary coordination shell residues exert exquisite control over the dual activities of OvoAMtht (sulfoxide synthase vs. thiol oxygenase activities). OvoAMtht is an excellent system for future detailed mechanistic investigation on how metal ligands and secondary coordination shell residues fine-tune the iron-center electronic properties to achieve different reactivities.R35 GM136294 - NIGMS NIH HHSPublished versio

    A compendium of genetic regulatory effects across pig tissues

    Get PDF
    The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.</p
    corecore