49 research outputs found

    Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content

    Get PDF
    Top–down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content

    The Response of Land Surface Temperature Changes to the Vegetation Dynamics in the Yangtze River Basin

    No full text
    Land surface temperature (LST) is a key parameter in the study of surface energy balance and climate change from local through to global scales. Vegetation has inevitably influenced the LST by changing the surface properties. However, the thermal environment pattern in the Yangtze River Basin (YRB) still remains unclear after the implementation of large-scale ecological restoration projects. In this study, the temporal and spatial variation characteristics of LST were analyzed based on the Theil–Sen estimator, Mann–Kendall trend analysis and Hurst exponent from 2003 to 2021. The relationships between vegetation and LST were further revealed by using correlation analysis and trajectory-based analysis. The results showed that the interannual LST was in a state of fluctuation and rise, and the increasing rate at night time (0.035 °C·yr−1) was faster than that at day time (0.007 °C·yr−1). An obvious cooling trend could be identified from 2007 to 2012, followed by a rapid warming. Seasonally, the warming speed was the fastest in summer and the slowest in autumn. Additionally, it was found that autumn LST had a downward trend of 0.073 °C·yr−1 after 2015. Spatially, the Yangtze River Delta, Hubei province, and central Sichuan province had a significant warming trend in all seasons, except autumn. The northern Guizhou province and Chongqing showed a remarkable cooling trend only in autumn. The Hurst exponent results indicated that the spring LST change was more consistent than the other three seasons. It was found by studying the effect of land cover types on LST changes that sparse vegetation had a more significant effect than dense vegetation. Vegetation greening contributed 0.0187 °C·yr−1 to the increase in LST in winter, which was spatially concentrated in the central region of the YRB. For the other three seasons, vegetation greening slowed the LST increase, and the degree of the effect decreased sequentially in autumn, summer, spring and winter. These results improve the understanding of past and future variations in LST and highlight the importance of vegetation for temperature change mitigation

    The Response of Land Surface Temperature Changes to the Vegetation Dynamics in the Yangtze River Basin

    No full text
    Land surface temperature (LST) is a key parameter in the study of surface energy balance and climate change from local through to global scales. Vegetation has inevitably influenced the LST by changing the surface properties. However, the thermal environment pattern in the Yangtze River Basin (YRB) still remains unclear after the implementation of large-scale ecological restoration projects. In this study, the temporal and spatial variation characteristics of LST were analyzed based on the Theil–Sen estimator, Mann–Kendall trend analysis and Hurst exponent from 2003 to 2021. The relationships between vegetation and LST were further revealed by using correlation analysis and trajectory-based analysis. The results showed that the interannual LST was in a state of fluctuation and rise, and the increasing rate at night time (0.035 °C·yr−1) was faster than that at day time (0.007 °C·yr−1). An obvious cooling trend could be identified from 2007 to 2012, followed by a rapid warming. Seasonally, the warming speed was the fastest in summer and the slowest in autumn. Additionally, it was found that autumn LST had a downward trend of 0.073 °C·yr−1 after 2015. Spatially, the Yangtze River Delta, Hubei province, and central Sichuan province had a significant warming trend in all seasons, except autumn. The northern Guizhou province and Chongqing showed a remarkable cooling trend only in autumn. The Hurst exponent results indicated that the spring LST change was more consistent than the other three seasons. It was found by studying the effect of land cover types on LST changes that sparse vegetation had a more significant effect than dense vegetation. Vegetation greening contributed 0.0187 °C·yr−1 to the increase in LST in winter, which was spatially concentrated in the central region of the YRB. For the other three seasons, vegetation greening slowed the LST increase, and the degree of the effect decreased sequentially in autumn, summer, spring and winter. These results improve the understanding of past and future variations in LST and highlight the importance of vegetation for temperature change mitigation

    Determination of Iodine in Geochemical Samples by ICP-MS with Sodium Carbonate-Zinc Oxide Semi-melting

    No full text
    BACKGROUND: The determination of iodine in geochemical samples by inductively coupled plasma-mass spectrometry (ICP-MS) is treated mainly by closed sample melting, mixed acid solution, alkali fusion and semi-melting method. However, due to the complex existent morphology of iodine in soil and sediment samples, including periodate, iodate and iodide ions, and the first ionization energy of iodine being high as a halogen group element, there are problems such as incomplete dissolution, strong memory effect and poor precision during sample processing and measurement. OBJECTIVES: To improve the determination of iodine in geochemical samples by ICP-MS. METHODS: The samples were treated by sodium carbonate-zinc oxide semi-melting method, extracted with boiling water-ethanol, and separated by 732 cation exchange resin. Following this, iodine in the solution was determined by ICP-MS using an internal standard method. RESULTS: The optimized detection limit of iodine was 0.045μg/g, the lower limit of detection was 0.15μg/g. The precision (RSD, n=12) and the accuracy (△logC) of the method were ≤5.93% and ≤0.01, respectively, which satisfied the analysis standards of geochemical survey sample. CONCLUSIONS: This method meets the requirements of sample analysis for geochemical investigation, and can be used for the analysis of iodine in large quantities of soil and sediment samples

    Spatiotemporal Dynamics of Terrestrial Vegetation and Its Driver Analysis over Southwest China from 1982 to 2015

    No full text
    Global environmental changes have been dramatic recently, exerting substantial effects on the structures and functions of terrestrial ecosystems, especially for the ecologically-fragile karst regions. Southwest China is one of the largest karst continuum belts around the world, which also contributes about 1/3 of terrestrial carbon sequestration to China. Therefore, a deep understanding of the long-term changes of vegetation across Southwest China over the past decades is critical. Relying on the long time series of Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies normalized difference vegetation index (GIMMS NDVI3g) data set, this study examined the spatial and temporal patterns of vegetation conditions in Southwest China from 1982 to 2015, as well as their response to the environmental factors including temperature, precipitation and downward shortwave radiation. Multi-year mean NDVI showed that except the northwestern region, the NDVI of Southwest China was large, ranging from 0.5 to 0.8. Meanwhile, nearly 43.7% of the area experienced significant improvements in NDVI, whereas only 3.47% of the area exhibited significant decreases in NDVI. Interestingly, the NDVI in karst area increased more quickly with 1.035 × 10−3/a in comparison with that in the non-karst area with about 0.929 × 10−3/a. Further analysis revealed that temperature is the dominant environmental factor controlling the interannual changes in NDVI, accounting for 48.19% of the area, followed by radiation (3.71%) and precipitation (3.09%), respectively

    Contrasting Performance of the Remotely-Derived GPP Products over Different Climate Zones across China

    No full text
    Precise quantification of terrestrial gross primary production (GPP) has been recognized as one of the most important components in understanding the carbon balance between the biosphere and the atmosphere. In recent years, although many large-scale GPP estimates from satellite data and ecosystem models have been generated, few attempts have been made to compare the different GPP products at national scales, particularly for various climate zones. In this study, two of the most widely-used GPP datasets were systematically compared over the eight climate zones across China’s terrestrial ecosystems from 2001 to 2015, which included the moderate resolution imaging spectroradiometer (MODIS) GPP and the breathing Earth system simulator (BESS) GPP products. Additionally, the coarse (0.05o) GPP estimates from the vegetation photosynthesis model (VPM) at the same time scale were used for auxiliary analysis with the two products. Both MODIS and BESS products exhibited a decreasing trend from the southeast region to the northwest inland. The largest GPP was found in the tropical humid region with 5.49 g C m−2 d−1 and 5.07 g C m−2 d−1 for MODIS and BESS, respectively, while the lowest GPP was distributed in the warm temperate arid region, midtemperate semiarid region and plateau zone. Meanwhile, the work confirmed that all these GPP products showed apparent seasonality with the peaks in the summertime. However, large differences were found in the interannual variations across the three GPP products over different climate regions. Generally, the BESS GPP agreed better than the MODIS GPP when compared to the seasonal and interannual variations of VPM GPP. Furthermore, the spatial correlation analysis between terrestrial GPP and the climatic factors, including temperature and precipitation, indicated that natural rainfall dominated the variability in GPP of Northern China, such as the midtemperate semiarid region, while temperature was a key controlling factor in the Southern China and the Tibet Plateau area

    Remotely Monitoring Ecosystem Water Use Efficiency of Grassland and Cropland in China’s Arid and Semi-Arid Regions with MODIS Data

    No full text
    Scarce water resources are available in the arid and semi-arid areas of Northwest China, where significant water-related challenges will be faced in the coming decades. Quantitative evaluations of the spatio-temporal dynamics in ecosystem water use efficiency (WUE), as well as the underlying environmental controls, are crucial for predicting future climate change impacts on ecosystem carbon-water interactions and agricultural production. However, these questions remain poorly understood in this typical region. By means of continuous eddy covariance (EC) measurements and time-series MODIS data, this study revealed the distinct seasonal cycles in gross primary productivity (GPP), evapotranspiration (ET), and WUE for both grassland and cropland ecosystems, and the dominant climate factors performed jointly by temperature and precipitation. The MODIS WUE estimates from GPP and ET products can capture the broad trend in WUE variability of grassland, but with large biases for maize cropland, which was mainly ascribed to large uncertainties resulting from both GPP and ET algorithms. Given the excellent biophysical performance of the MODIS-derived enhanced vegetation index (EVI), a new greenness model (GR) was proposed to track the eight-day changes in ecosystem WUE. Seasonal variations and the scatterplots between EC-based WUE and the estimates from time-series EVI data (WUEGR) also certified its prediction accuracy with R2 and RMSE of both grassland and cropland ecosystems over 0.90 and less than 0.30 g kg−1, respectively. The application of the GR model to regional scales in the near future will provide accurate WUE information to support water resource management in dry regions around the world
    corecore