52 research outputs found

    Enantioselective Activity and Toxicity of Chiral Herbicides

    Get PDF

    Generalized Learning Riemannian Space Quantization:a Case Study on Riemannian Manifold of SPD Matrices

    No full text
    Learning vector quantization (LVQ) is a simple and efficient classification method, enjoying great popularity. However, in many classification scenarios, such as electroencephalogram (EEG) classification, the input features are represented by symmetric positive-definite (SPD) matrices that live in a curved manifold rather than vectors that live in the flat Euclidean space. In this article, we propose a new classification method for data points that live in the curved Riemannian manifolds in the framework of LVQ. The proposed method alters generalized LVQ (GLVQ) with the Euclidean distance to the one operating under the appropriate Riemannian metric. We instantiate the proposed method for the Riemannian manifold of SPD matrices equipped with the Riemannian natural metric. Empirical investigations on synthetic data and real-world motor imagery EEG data demonstrate that the performance of the proposed generalized learning Riemannian space quantization can significantly outperform the Euclidean GLVQ, generalized relevance LVQ (GRLVQ), and generalized matrix LVQ (GMLVQ). The proposed method also shows competitive performance to the state-of-the-art methods on the EEG classification of motor imagery tasks

    Periodical metal cylinders for improving heating uniformity of small batch materials in microwave applicators with rotating turntables

    No full text
    Microwave applicators with rotating turntables have been widely applied in many fields, but the heating non-uniformity still limits the further applications. Specifically, when microwave applicators are used to process small batch materials, materials have to be away from the center of rotating turntables, where the problem of heating non-uniformity is more prominent. In order to overcome this difficulty, this paper presents a novel periodical metal cylinder structure to improve the heating uniformity for microwave applicators. With the proposed periodical metal cylinders being placed beneath rotating turntables, electromagnetic fields can be well adjusted, thus improving the heating uniformity. To demonstrate the heating uniformity with the proposed structure, the heating process of the arrays of two and three potato slices in a practical microwave applicator is simulated by the finite element method, respectively. The results show that both the heating uniformity of the two and three potato slices can be improved, which is validated by experiments. Furthermore, the results show that the temperature similarity among the processed potato slices with the proposed structure is better than that without the proposed structure

    Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research

    No full text
    Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses

    The Phosphoproteomic Response of Okra (Abelmoschus esculentus L.) Seedlings to Salt Stress

    No full text
    Soil salinization is a major environmental stresses that seriously threatens land use efficiency and crop yields worldwide. Although the overall response of plants to NaCl has been well studied, the contribution of protein phosphorylation to the detoxification and tolerance of NaCl in okra (Abelmoschus esculentus L.) seedlings is unclear. The molecular bases of okra seedlings’ responses to 300 mM NaCl stress are discussed in this study. Using a combination of affinity enrichment, tandem mass tag (TMT) labeling and high-performance liquid chromatography–tandem mass spectrometry analysis, a large-scale phosphoproteome analysis was performed in okra. A total of 4341 phosphorylation sites were identified on 2550 proteins, of which 3453 sites of 2268 proteins provided quantitative information. We found that 91 sites were upregulated and 307 sites were downregulated in the NaCl/control comparison group. Subsequently, we performed a systematic bioinformatics analysis including gene ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation. The latter revealed that the differentially expressed proteins were most strongly associated with ‘photosynthesis antenna proteins’ and ‘RNA degradation’. These differentially expressed proteins probably play important roles in salt stress responses in okra. The results should help to increase our understanding of the molecular mechanisms of plant post-translational modifications in response to salt stress

    Exposure to Organochlorine Pollutants and Type 2 Diabetes: A Systematic Review and Meta-Analysis

    No full text
    <div><p>Objective</p><p>Though exposure to organochlorine pollutants (OCPs) is considered a risk factor for type 2 diabetes (T2DM), epidemiological evidence for the association remains controversial. A systematic review and meta-analysis was applied to quantitatively evaluate the association between exposure to OCPs and incidence of T2DM and pool the inconsistent evidence.</p><p>Design and Methods</p><p>Publications in English were searched in MEDLINE and WEB OF SCIENCE databases and related reference lists up to August 2013. Quantitative estimates and information regarding study characteristics were extracted from 23 original studies. Quality assessments of external validity, bias, exposure measurement and confounding were performed, and subgroup analyses were conducted to examine the heterogeneity sources.</p><p>Results</p><p>We retrieved 23 eligible articles to conduct this meta-analysis. OR (odds ratio) or RR (risk ratio) estimates in each subgroup were discussed, and the strong associations were observed in PCB-153 (OR, 1.52; 95% CI, 1.19–1.94), PCBs (OR, 2.14; 95% CI, 1.53–2.99), and <i>p,p′</i>-DDE (OR, 1.33; 95% CI, 1.15–1.54) based on a random-effects model.</p><p>Conclusions</p><p>This meta-analysis provides quantitative evidence supporting the conclusion that exposure to organochlorine pollutants is associated with an increased risk of incidence of T2DM.</p></div

    The study search and selection process.

    No full text
    <p>The study search and selection process.</p
    • …
    corecore