3 research outputs found

    An optimal rewiring strategy for cooperative multiagent social learning

    Get PDF
    Multiagent coordination is a key problem in cooperative multiagent systems (MASs). It has been widely studied in both fixed-agent repeated interaction setting and static social learning framework. However, two aspects of dynamics in real-world MASs are currently neglected. First, the network topologies can change during the course of interaction dynamically. Second, the interaction utilities can be different among each pair of agents and usually unknown before interaction. Both issues mentioned above increase the difficulty of coordination. In this paper, we consider the multiagent social learning in a dynamic environment in which agents can alter their connections and interact with randomly chosen neighbors with unknown utilities beforehand. We propose an optimal rewiring strategy to select most beneficial peers to maximize the accumulated payoffs in long-run interactions. We empirically demonstrate the effects of our approach in a variety of large-scale MASs

    An optimal rewiring strategy for cooperative multiagent social learning

    No full text
    Multiagent coordination in cooperative multiagent systems (MASs) has been widely studied in both fixed-agent repeated interaction setting and static social learning framework. However, two aspects of dynamics in real-world MASs are currently missing. First, the network topologies can dynamically change during the course of interaction. Second, the interaction utilities between each pair of agents may not be identical and not known as a prior. Both issues mentioned above increase the difficulty of coordination. In this paper, we consider the multiagent social learning in a dynamic environment in which agents can alter their connections and interact with randomly chosen neighbors with unknown utilities beforehand. We propose an optimal rewiring strategy to select most beneficial peers to maximize the accumulated payoffs in long-run interactions. We empirically demonstrate the effects of our approach in large-scale MASs
    corecore