15,528 research outputs found

    Signal estimation in cognitive satellite networks for satellite-based industrial internet of things

    Get PDF
    Satellite industrial Internet of Things (IIoT) plays an important role in industrial manufactures without requiring the support of terrestrial infrastructures. However, due to the scarcity of spectrum resources, existing satellite frequency bands cannot satisfy the demand of IIoT, which have to explore other available spectrum resources. Cognitive satellite networks are promising technologies and have the potential to alleviate the shortage of spectrum resources and enhance spectrum efficiency by sharing both spectral and spatial degrees of freedom. For effective signal estimations, multiple features of wireless signals are needed at receivers, the transmissions of which may cause considerable overhead. To mitigate the overhead, part of parameters, such as modulation order, constellation type, and signal to noise ratio (SNR), could be obtained at receivers through signal estimation rather than transmissions from transmitters to receivers. In this article, a grid method is utilized to process the constellation map to obtain its equivalent probability density function. Then, binary feature matrix of the probability density function is employed to construct a cost function to estimate the modulation order and constellation type for multiple quadrature amplitude modulation (MQAM) signal. Finally, an improved M 2 M ∞ method is adopted to realize the SNR estimation of MQAM. Simulation results show that the proposed method is able to accurately estimate the modulation order, constellation type, and SNR of MQAM signal, and these features are extremely useful in satellite-based IIoT

    Entanglement dynamics of photon pairs emitted from quantum dot

    Full text link
    We present a model to derive the state of the photon pairs generated by the biexciton cascade decay of a self-assembled quantum dot, which agrees well with the experimental result. Furthermore we calculate the concurrence and entanglement sudden death is found in this system with temperature increasing, which prevents quantum dot emits entangled photon pairs at a high temperature. The relationship between the fine structure splitting and the sudden death temperature is provided too
    • …
    corecore