23 research outputs found

    Draft genome sequence of the mulberry tree Morus notabilis

    Get PDF
    Human utilization of the mulberry–silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating the species’ spread worldwide. The mulberry tree is among a few eudicots but several Rosales that have not preserved genome duplications in more than 100 million years; however, a neopolyploid series found in the mulberry tree and several others suggest that new duplications may confer benefits. Five predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm, suggesting interactions at molecular levels in the plant–herbivore relationship. The identification and analyses of mulberry genes involved in diversifying selection, resistance and protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry plants

    Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.)

    No full text
    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work

    Pb Content, Risk Level and Primary-Source Apportionment in Wheat and Rice Grains in the Lihe River Watershed, Taihu Region, Eastern China

    No full text
    This study detailed a complete research from Lead (Pb) content level to ecological and health risk to direct- and primary-sources apportionment arising from wheat and rice grains, in the Lihe River Watershed of the Taihu region, East China. Ecological and health risk assessment were based on the pollution index and US Environmental Protection Agency (EPA) health risk assessment model. A three-stage quantitative analysis program based on Pb isotope analysis to determine the relative contributions of primary sources involving (1) direct-source apportionment in grains with a two-end-member model, (2) apportionment of soil and dustfall sources using the IsoSource model, and (3) the integration of results of (1) and (2) was notedly first proposed. The results indicated that mean contents of Pb in wheat and rice grains were 0.54 and 0.45 mg/kg and both the bio-concentration factors (BCF) were <<1; the ecological risk pollution indices were 1.35 for wheat grains and 1.11 for rice grains; hazard quotient (HQ) values for adult and child indicating health risks through ingestion of grains were all <1; Coal-fired industrial sources account for up to 60% of Pb in the grains. This study provides insights into the management of grain Pb pollution and a new method for its source apportionment

    Phenolics and Antioxidant Activity of Mulberry Leaves Depend on Cultivar and Harvest Month in Southern China

    Get PDF
    Abstract: To elucidate the effects of cultivar and harvest month on the phenolic content and antioxidant activity of mulberry leaves, four major phenolics, including chlorogenic acid (ChA), benzoic acid (BeA), rutin (Rut) and astragalin (Ast), were quantified using an HPLC-UV method. Leaves from six mulberry cultivars, collected from April to October, were analyzed. The antioxidant activity of mulberry leaves was assessed by ferric reducing antioxidant power (FRAP), hydroxyl radical scavenging activity (HSA) and superoxide radical scavenging activity (SSA) assays. The results showed that the total values of the four phenolic compounds ranged from 2.3 dry weight (DW) to 4.2 mg/g DW, with ChA being the major compound. The mean total phenol (TP) content of the six cultivars ranged from 30.4 equivalents (GAE) mg/g DW to 44.7 GAE mg/g DW. Mulberry leaves harvested in May had the highest TP content. Moreover, the antioxidant activities of mulberry leaves harvested from April to October differed noticeably. In general, Kq 10 and May wer

    Identification and validation of reference genes for qRT-PCR analysis in mulberry (Morus alba L.).

    No full text
    Mulberry (Morus alba L.) is an important economic tree species in many countries. Quantitative real time PCR (qRT-PCR) has become a widely used method for gene expression studies in plants. A suitable reference gene is essential to ensure accurate and reliable results for qRT-PCR analyses. However, no reports describing the selection of reference genes have been published for mulberry. In this work, we evaluated the stability of twenty candidate reference genes in different plant tissues and under different stress conditions by qRT-PCR in mulberry using algorithms in two programs-geNorm and NormFinder. The results revealed that TUB2, UBI4, ACTIN3 and RPL4 were ranked as the most stable reference genes in the samples subsets, whereas EF1α4 and TUB3showed the least stability with both algorithms. To further validate the stability of the reference genes, the expression patterns of six genes of mulberry were analyzed by normalization with the selected reference genes. Our study will benefit future analyses of gene expression in mulberry

    Effects of Dietary Supplementation with Mulberry Leaf Powder on the Growth Performance, Lipid Metabolism Parameters, Immunity Indicators, and Gut Microbiota of Dogs

    No full text
    Overfeeding and a lack of exercise are increasingly causing obesity in dogs, which has become a big problem threatening the health of dogs. Therefore, it is necessary to investigate how dietary regulations can help to improve dogs’ body conditions and minimize obesity. This study was carried out to investigate the effects of dietary mulberry leaf powder (MLP) supplementation on the growth performance, lipid metabolism parameters, and gut microbiota of Chinese indigenous dogs. Fifteen Chinese indigenous dogs (6.34 ± 0.56 kg) were randomly assigned to three treatment groups and received either the control diet (CON), high-fat diet (HF), or high-fat diet containing 6% Mulberry leaf powder (MLP) for four weeks. The CON group received a basal diet, the HF group received a basal diet supplemented with 10% lard, and the MLP group received a basal diet supplemented with 10% lard and 6% MLP. The trial lasted for four weeks. The growth performance, lipid metabolism parameters, immune globulins, cytokines, and fecal microbiota were measured. Results showed that there was no significant difference in growth performance. The MLP group appeared to have decreased (p p Alloprevotella, Sarcina, and species belonging to the Bacteroides and Lactobacillus genus. Overall, the dietary supplementation of 6% MLP can improve lipid metabolism conditions and immunity in high-fat-diet-fed dogs, and can alter the gut microbial composition of dogs

    Gene expression stability values (M) of the candidate reference genes calculated by geNorm.

    No full text
    <p>Ranking of gene expression stability was performed in all the samples, in abiotic stress samples, in tissue samples, and in green fruit and red fruit samples. The lowest M value indicates the most stable gene, whereas the highest value represents the most highly variable gene.</p
    corecore