30 research outputs found

    Verification of a novel point-of-care HbA1c device in real world clinical practice by comparison to three high performance liquid chromatography instruments

    Get PDF
    Introduction: A real world clinical study was designed and conducted to evaluate the performance of a novel point-of-care device for determination of glycated haemoglobin A1c (HbA1c), A1C EZ 2.0, in daily clinical practice. Materials and methods: Five hundred and fourteen subjects were included in this study, and divided into three groups. HbA1c was measured by A1C EZ 2.0 and three different high performance liquid chromatography (HPLC) devices: Bio-Rad Variant II Turbo, Tosoh HLC-723 G8 and Premier Hb9210 separately. Precision of A1C EZ 2.0 was also evaluated. Results: Results obtained from A1C EZ 2.0 and all HPLC devices are correlated. Passing-Bablok regression analysis shows the equation of A1C EZ 2.0 results against the mean of HPLC devices with corresponding 95% confidence intervals (95% CI) for the intercept and slope is y = 0.10 (- 0.17 to 0.10) + 1.00 (1.00 to 1.04) x. Bland-Altman difference plot shows that the mean relative difference between A1C EZ 2.0 and Variant II Turbo, G8, Hb9210 and all HPLC results is 2.5%, 0.6%, 0.4% and 1.1%, respectively. In addition, 121 pairs of results determined by using both venous and capillary blood prove that the difference of two kinds of blood sample causes no notable variation when measured by A1C EZ 2.0. Precision study gives 2.3% and 1.9% of total coefficient of variation for normal and abnormal HbA1c sample in A1C EZ 2.0. Conclusions: HbA1c values measured by A1C EZ 2.0 were in good accordance with the results obtained with the reference HPLC devices

    Active anti-acetylcholinesterase component of secondary metabolites produced by the endophytic fungi of Huperzia serrata

    Get PDF
    Background: An endophytic fungus lives within a healthy plant during certain stages of, or throughout, its life cycle. Endophytic fungi do not always cause plant disease, and they include fungi that yield different effects, including mutual benefit, and neutral and pathogenic effects. Endophytic fungi promote plant growth, improve the host plant's resistance to biotic and abiotic stresses, and can produce the same or similar biologically active substances as the host. Thus, endophytic fungal products have important implications in drug development. Result: Among the numerous endophytic fungi, we identified two strains, L10Q37 and LQ2F02, that have anti-acetylcholinesterase activity, but the active compound was not huperzine A. The aim of this study was to investigate the anti-acetylcholinesterase activity of secondary metabolites isolated from the endophytic fungi of Huperzia serrata . Microbial cultivation and fermentation were used to obtain secondary metabolites. Active components were then extracted from the secondary metabolites, and their activities were tracked. Two compounds that were isolated from endophytic fungi of H. serrata were identified and had acetylcholine inhibitory activities. In conclusion, endophytic fungal strains were found in H. serrata that had the same anti-acetylcholinesterase activity. Conclusion: We isolated 4 compounds from the endophytic fungus L10Q37, among them S1 and S3 are new compounds. 6 compounds were isolated from LQ2F02, all 6 compounds are new compounds. After tested anti acetylcholinesterase activity, S5 has the best activity. Other compounds' anti acetylcholinesterase activity was not better compared with huperzine A

    Identification and characterization of the highly polymorphic locus D14S739 in the Han Chinese population

    Get PDF
    Aim To systemically select and evaluate short tandem repeats (STRs) on the chromosome 14 and obtain new STR loci as expanded genotyping markers for forensic application. Methods STRs on the chromosome 14 were filtered from Tandem Repeats Database and further selected based on their positions on the chromosome, repeat patterns of the core sequences, sequence homology of the flanking regions, and suitability of flanking regions in primer design. The STR locus with the highest heterozygosity and polymorphism information content (PIC) was selected for further analysis of genetic polymorphism, forensic parameters, and the core sequence. Results Among 26 STR loci selected as candidates, D14S739 had the highest heterozygosity (0.8691) and PIC (0.8432), and showed no deviation from the Hardy-Weinberg equilibrium. 14 alleles were observed, ranging in size from 21 to 34 tetranucleotide units in the core region of (GATA)9-18 (GACA)7-12 GACG (GACA)2 GATA. Paternity testing showed no mutations. Conclusion D14S739 is a highly informative STR locus and could be a suitable genetic marker for forensic applications in the Han Chinese populatio

    Research progress in the application of in situ hydrogel system in tumor treatment

    No full text
    The in situ hydrogel drug delivery system is a hot research topic in recent years. Combining both properties of hydrogel and solution, in situ hydrogels can provide many advantages for drug delivery application, including easy application, high local drug concentration, prolonged drug retention time, reduced drug dose in vivo, good biocompatibility and improved patient compliance, thus has potential in tumor treatment. In this paper, the related literature reports in recent years were reviewed to summarize and discuss the research progress and development prospects in the application of in situ hydrogels in tumor treatment

    Per-flow Queueing by Dynamic Queue Sharing

    No full text
    Abstract — Per-flow queuing is believed to be able to guarantee advanced Quality of Service (QoS) for each flow. With the dramatic increase of link speed and number of traffic flows, perflow queuing faces a great challenge since millions of queues need to be maintained for implementation in a traditional sense. In this paper, by setting only a small number of physical queues, we propose a Dynamic Queue Sharing (DQS) mechanism to achieve an equal performance to the pure per-flow queuing with a lower cost. The proposed mechanism is based on an interesting fact that the number of simultaneous active flows in the router buffer is far less than that of in-progress flows. In DQS, a physical queue is dynamically created on-demand when a new flow comes and then dynamically released when the flow temporarily pauses. Hashing and binary sorting tree (or linked list) are combined to manage the mapping between flows and queues, so as to isolate flows in different queues. Theoretical analysis and traces experiments are conducted to evaluate DQS. The results demonstrate that when the parameters are well set, the operation delay is less than two time cycles in average with an extra memory of 16k bits. I

    Landmark-Centric Routing for Wireless Sensor Networks in Mobile Delay Tolerant Environments

    No full text
    Wireless sensor networks (WSNs) have wide applications in many fields sharing common grounds as their major technical challenges. This paper focuses on a high-level information association issue and designs an efficient routing protocol accordingly for delay tolerant mobile sensor networks (DTMSNs). In this paper, after making an analysis about the effect of social network theory on forwarding scheme and node mobility, we exploit landmark, a new social-aware metric indicating the geographical location corresponding to a node interest or a node community. To the best of our knowledge, this is the first work in which landmark is utilized to assist message forwarding in DTMSNs. Additionally, we propose the landmark-centric routing protocol utilizing the metric to accurately predict node mobility geographically. We can take full advantage of node mobility in our protocol while preserving the positive effects of existing social-aware metrics on protocol performance. Simulation results show that the proposed protocol achieves the highest packet delivery ratio outperforming SocialCast and doubling SGBR with more than 50% delivery cost reducing

    Active anti-acetylcholinesterase component of secondary metabolites produced by the endophytic fungi of Huperzia serrata

    Get PDF
    Background: An endophytic fungus lives within a healthy plant during certain stages of, or throughout, its life cycle. Endophytic fungi do not always cause plant disease, and they include fungi that yield different effects, including mutual benefit, and neutral and pathogenic effects. Endophytic fungi promote plant growth, improve the host plant's resistance to biotic and abiotic stresses, and can produce the same or similar biologically active substances as the host. Thus, endophytic fungal products have important implications in drug development. Result: Among the numerous endophytic fungi, we identified two strains, L10Q37 and LQ2F02, that have anti-acetylcholinesterase activity, but the active compound was not huperzine A. The aim of this study was to investigate the anti-acetylcholinesterase activity of secondary metabolites isolated from the endophytic fungi of Huperzia serrata. Microbial cultivation and fermentation were used to obtain secondary metabolites. Active components were then extracted from the secondary metabolites, and their activities were tracked. Two compounds that were isolated from endophytic fungi of H. serrata were identified and had acetylcholine inhibitory activities. In conclusion, endophytic fungal strains were found in H. serrata that had the same anti-acetylcholinesterase activity. Conclusion: We isolated 4 compounds from the endophytic fungus L10Q37, among them S1 and S3 are new compounds. 6 compounds were isolated from LQ2F02, all 6 compounds are new compounds. After tested anti acetylcholinesterase activity, S5 has the best activity. Other compounds' anti acetylcholinesterase activity was not better compared with huperzine A

    Investigation of Linear Amplification Using Abasic Site-Containing Primers Coupled to Routine STR Typing for LT-DNA Analysis

    No full text
    Obtaining a full short tandem repeat (STR) profile from a low template DNA (LT-DNA) still presents a challenge for conventional methods due to significant stochastic effects and polymerase slippage. A novel amplification method with a lower cost and higher accuracy is required to improve the DNA amount. Previous studies suggested that DNA polymerases without bypass activity could not perform processive DNA synthesis beyond abasic sites in vitro and our results showed a lack of bypass activity for Phusion, Pfu and KAPA DNA polymerases in this study. Based on this feature, we developed a novel linear amplification method, termed Linear Aamplification for double-stranded DNA using primers with abasic sites near 3′ end (abLAFD), to limit the replication error. The amplification efficiency was evaluated by qPCR analysis with a result of approximately a 130-fold increase in target DNA. In a LT-DNA analysis, the abLAFD method can be employed as a pre-PCR. Similar to nested PCRs, primer sets used for the abLAFD method were designed as external primers suitable for commercial multiplex STR amplification assays. The practical performance of the abLAFD method was evaluated by coupling it to a routine PP21 STR analysis using 50 pg and 25 pg DNA. Compared to reference profiles, all abLAFD profiles showed significantly recovered alleles, increased average peak height and heterozygote balance with a comparable stutter ratio. Altogether, our results support the theory that the abLAFD method is a promising strategy coupled to STR typing for forensic LT-DNA analysis

    Characterizing Y-STRs in the Evaluation of Population Differentiation Using the Mean of Allele Frequency Difference between Populations

    No full text
    Y-chromosomal short tandem repeats (Y-STRs) are widely used in human research for the evaluation of population substructure or population differentiation. Previous studies show that several haplotype sets can be used for the evaluation of population differentiation. However, little is known about whether each Y-STR in these sets performs well during this procedure. In this study, a total of 20,927 haplotypes of a Yfiler Plus set were collected from 41 global populations. Different configurations were observed in multidimensional scaling (MDS) plots based on pairwise genetic distances evaluated using a Yfiler set and a Yfiler Plus set, respectively. Subsequently, 23 single-copy Y-STRs were characterized in the evaluation of population differentiation using the mean of allele frequency difference (mAFD) between populations. Our results indicated that DYS392 had the largest mAFD value (0.3802) and YGATAH4 had the smallest value (0.1845). On the whole, larger pairwise genetic distances could be obtained using the set with the top fifteen markers from these 23 single-copy Y-STRs, and clear clustering or separation of populations could be observed in the MDS plot in comparison with those using the set with the minimum fifteen markers. In conclusion, the mAFD value is reliable to characterize Y-STRs for efficiency in the evaluation of population differentiation
    corecore