11 research outputs found

    Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1

    No full text
    187-195Quercetin (3,3',4',5,7-penthydroxyflavone)-induced biological effects have been beneficial in various disease conditions. In this study, wound healing potential of quercetin was evaluated in a time-dependent manner in open excision wounds in adult Wistar rats. Experimentally-wounded rats were divided into two groups namely, control and quercetin-treated. Wounds were photographed and the area was measured on the day of wounding and on days 3, 7, 11 and 14 post-wounding. The granulation/healing tissue was collected on days 3, 7, 11 and 14 post-wounding for cytokine/growth factor measurements and histology/immunohistochemistry studies. There was significant time-dependent increase in wound closure in quercetin-treated rats. Vascular endothelial growth factor and transforming growth factor-β1 expressions were significantly upregulated in quercetin-treated rats, whereas tumor necrosis factor-α level was markedly reduced. Interleukin-10 levels and CD31 stained vessels were markedly higher on day 3 and on day 7, respectively, in quercetin-treated rats. In H & E stained sections, quercetin-treated group showed less inflammatory cells, more fibroblast proliferation, increased microvessel density, better reepithelialization and more regular collagen deposition, as compared to control. The results suggest that topical application of quercetin promotes wound healing by effectively modulating the cytokines, growth factors and cells involved in inflammatory and proliferative phases of healing

    Not Available

    No full text
    Not AvailableBetulinic acid (BA) exhibits many biological effects including anti-inflammatory and anti-oxidant activities. Free radicals and pro-inflammatory mediators play an important role in the pathology of inflammatory bowel disease (IBD) and associated pain. We, therefore, examined the anti-oxidant, anti-inflammatory, and anti-nociceptive potential of BA in colitis. Colitis was induced with 3% (w/v) dextran sulfate sodium (DSS) in drinking water in mice for 1to7 days. BA (3, 10 and 30 mg/kg) was given orally for 0 to 7 days. BA was also tested for its efficacy in acetic acid and mustard oil-induced visceral nociception in mice at same doses. BA significantly prevented diarrhea; bleeding and colonic pathological changes induced by DSS. Further, BA reduced the colon nitrite, malondialdehyde, myeloperoxidase, and lipid hydroperoxide levels and restored the superoxide dismutase, catalase and reduced glutathione levels to normalize the redox balance in DSS-exposed mice. Inflammatory mediators like matrix metalloproteinase-9 and prostaglandin E2 levels were also significantly attenuated by BA in colitis mice. Additionally, BA reduced acetic acid and mustard oil-induced visceral pain in mice. In conclusion, the results of the present study suggest that BA possesses good anti-nociceptive activity and the anti-IBD effects of BA are due to its anti-oxidant and anti-inflammatory potential.Not Availabl

    Anti-inflammatory effect of dikaempferol rhamnopyranoside, a diflavonoid from <i> Eugenia jambolana</i> Lam. Leaves

    Get PDF
    801-807Traditionally, the Indian Blackberry or locally called Jamun, Eugenia jambolana Lam. (Syn.: Syzygium cumini), is well known for its pharmacological potential, particularly anti-inflammatory. Here, we studied kaempferol-7-O-α-L-rhamnopyranoside]-4'-O-4'- [kaempferol-7-O-α-L-rhamnopyranoside (EJ-01) isolated from the E. jambolana leaves for possible anti-inflammatory activity. EJ-01 (3, 10 and 30 mg/kg, p.o.) was assessed for anti-inflammatory activity using carrageenan-induced paw edema model in mice by determining edema volume, myeloperoxidase (MPO), nitrite plus nitrate (NOx) and cytokine levels in paw edema tissue. EJ-01 significantly attenuated the edema, MPO levels, tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) levels in the edema of paw at the 5th hour after carrageenan injection at all doses. EJ-01 (30 mg/kg) decreased the nitric oxide (NO) levels of the edema of paw at the 5th hour after carrageenan injection. The anti-inflammatory mechanisms of EJ-01 might be related to the decrease in the level of edema paw by reduced activities of NO and MPO. It probably exerts anti-inflammatory effects through the suppression of TNF-α and IL-1β. Therefore, we conclude that EJ-01 could be positively exploited for itspotential benefits against inflammatory diseases and support the pharmacological basis of E. jambolana as traditional herbal medicine for the treatment of inflammatory diseases

    Coumarins from Seseli hartvigii

    No full text

    Intraocular Tuberculosis

    No full text

    Indian Society of Gastroenterology consensus on ulcerative colitis

    No full text
    corecore