970 research outputs found

    Aharonov-Bohm Effect at liquid-nitrogen temperature: Frohlich superconducting quantum device

    Get PDF
    The Aharonov-Bohm (AB) effect has been accepted and has promoted interdisciplinary scientific activities in modern physics. To observe the AB effect in condensed matter physics, the whole system needs to maintain phase coherence, in a tiny ring of the diameter 1 micrometer and at low temperatures below 1 K. We report that AB oscillations have been measured at high temperature 79 K by use of charge-density wave (CDW) loops in TaS3 ring crystals. CDW condensate maintained macroscopic quantum coherence, which extended over the ring circumference 85 micrometer. The periodicity of the oscillations is h/2e in accuracy within a 10 percent range. The observation of the CDW AB effect implies Frohlich superconductivity in terms of macroscopic coherence and will provide a novel quantum interference device running at room temperature.Comment: 11 pages, 4 figure

    Flat rotation curves in Chern-Simons modified gravity

    Get PDF
    We investigate the spacetime of a slowly rotating black hole in the Chern-Simons modified gravity. The long range feature of frame-dragging effect under the Chern-Simon gravity well explains the flat rotation curves of galaxies which is a central evidence of dark matter. Our solution provides a different scenario of rotating space from Goedel's solution.Comment: 4 pages, Accepted for publication in Phys. Rev.

    Does project portfolio management approach fit smart city management?

    Get PDF
    Nowadays public administrations have to face many challenges related to Smart City initiatives and must coordinate these projects executing effective Smart City strategies with the adoption of an efficient portfolio management framework. Except for a few aspects, literature about this topic is scarce so this study was carried out as an attempt to evaluate the feasibility of adopting PMI’s Project Portfolio Management methodology to handle Smart City initiatives. A specific survey investigating how much Smart City projects mirror portfolio dynamics has been submitted to experts across the globe and the collected results have been analysed according to our possibilities. Results are twofold: on the one hand, it appears that the Project Portfolio Management approach could be beneficial for managing Smart City project sets, on the other hand, the Project Portfolio Management seems to be a very suitable tool when the Smart City project portfolio is heavily influenced by external stakeholders

    Chiral charge-density-waves

    Get PDF
    We discovered the chirality of charge density waves (CDW) in 1T-TiSe2_2 by using scanning tunnelling microscopy (STM) and optical ellipsometry. We found that the CDW intensity becomes Ia1:Ia2:Ia3=1:0.7±0.1:0.5±0.1I{a_1}:I{a_2}:I{a_3} = 1:0.7 \pm 0.1:0.5 \pm 0.1, where IaiIa_i (i =1, 2, 3) is the amplitude of the tunnelling current contributed by the CDWs. There were two states, in which the three intensity peaks of the CDW decrease \textit{clockwise} and \textit{anticlockwise} when we index each nesting vector in order of intensity in the Fourier transformation of the STM images. The chirality in CDW results in the three-fold symmetry breaking. Macroscopically, two-fold symmetry was indeed observed in optical measurement. We propose the new generalized CDW chirality H_{CDW} \equiv {\boldmath q_1} \cdot ({\boldmath q_2}\times {\boldmath q_3}), where {\boldmath q_i} are the nesting vectors, which is independent of the symmetry of components. The nonzero HCDWH_{CDW} - the triple-{\boldmath q} vectors do not exist in an identical plane in the reciprocal space - should induce a real-space chirality in CDW system.Comment: 12 pages, 4 figure

    Gastro-intestinal parasites of pigs in Sardinia: a copromicroscopical investigation

    Get PDF
    This paper illustrates a copromicroscopical investigation carried out in Sardinia to update epidemiological data on diffusion of gastro-intestinal parasites in swine. Results obtained lead to suggest the employment of copromicroscopic exam to monitorate parasites diffusion in swine breedings in order to set up correct prophylactic and therapeutically intervents

    Persistent currents in Moebius strips

    Get PDF
    Relation between the geometry of a two-dimensional sample and its equilibrium physical properties is exemplified here for a system of non-interacting electrons on a Moebius strip. Dispersion relation for a clean sample is derived and its persistent current under moderate disorder is elucidated, using statistical analysis pertinent to a single sample experiment. The flux periodicity is found to be distinct from that in a cylindrical sample, and the essential role of disorder in the ability to experimentally identify a Moebius strip is pointed out.Comment: 5 pages, 4 figure

    Electronic Properties of Topological Materials: Optical Excitations in Moebius Conjugated Polymers

    Full text link
    Electronic structures and optical excitations in Moebius conjugated polymers are studied theoretically. Periodic and Moebius boundary conditions are applied to the tight binding model of poly(para-phenylene), taking exciton effects into account. We discuss that oligomers with a few structural units are more effective than polymers for observations of effects of discrete wave numbers that are shifted by the change in boundary condition. Next, calculations of optical absorption spectra are reported. Certain components of optical absorption for an electric field perpendicular to the polymer axis mix with absorption spectra for an electric field parallel to the polymer axis. Therefore, the polarization dependences of an electric field of light enable us to detect whether conjugated polymers have the Moebius boundary.Comment: 10 pages, 6 figures, to be published in J. Phys. Soc. Jpn., Vol. 74 No. 2 (February, 2005), Letter sectio

    Solving inverse problems of unknown contaminant source in groundwater-river integrated systems using a surrogate transport model based optimization

    Get PDF
    The paper presents a new approach to identify the unknown characteristics (release history and location) of contaminant sources in groundwater, starting from a few concentration observations at monitoring points. An inverse method that combines the forward model and an optimization algorithm is presented. To speed up the computation, the transfer function theory is applied to create a surrogate transport forward model. The performance of the developed approach is evaluated on two case studies (literature and a new one) under different scenarios and measurement error conditions. The literature case study regards a heterogeneous confined aquifer, while the proposed case study was never investigated before, it involves an aquifer-river integrated flow and transport system. In this case, the groundwater contaminant originated from a damaged tank, migrates to a river through the aquifer. The approach, starting from few concentration observations monitored at a downstream river cross-section, accurately estimates the release history at a groundwater contaminant source, even in presence of noise on observations. Moreover, the results show that the methodology is very fast, and can solve the inverse problem in much less computation time in comparison with other existing approaches
    corecore