14 research outputs found

    Experimental Therapeutics in Breast Cancer Cells

    Get PDF

    Antiproliferative Effect and the Isolated Compounds of Pouzolzia indica

    Get PDF
    Previous report showed the high potent antiproliferative effect of the methanolic part extracted from the aerial parts of Pouzolzia indica on NB4 and HT93A acute leukemic cell lines with the IC50 values of 28.5 and 49.8 μg/mL, respectively. The bioassay-guided fractionation of the methanolic part gave 5 fractions, that is, FFI–FFV. FFII, FFIII, and FFIV inhibited the above leukemic cell lines with the IC50 values of 15.1 (FFII), 14.4 (FFIII), 32.1 (FFIV), and 31.0 (FFII), 9.7 (FFIII), 10.5 (FFIV) μg/mL, respectively. The compounds in these fractions were isolated using chromatographic technique. FFII contained friedelin 1, 28-hydroxy-3-friedelanone 2, and 7-methoxy-coumarin 3. FFIII contained 6, 7-dimethoxy-coumarin 4, scopoletin 5, methyl caffeate 6. FFIV contained sitosteryl glucoside 7 and a supposed glycosphingolipid 8. The chemical structures were elucidated by spectroscopic methods

    Antibacterial and Antiproliferative Activities of Plumericin, an Iridoid Isolated from Momordica charantia

    Get PDF
    Plumericin, an iridoid lactone, was isolated with relatively high yield from Momordica charantia vine using the supercritical fluid extraction (SFE) and the separation box (Sepbox) comprising dual combination of high-performance liquid chromatography and solid phase extraction. This compound showed antibacterial activity against Enterococcus faecalis and Bacillus subtilis with minimum inhibitory concentration (MIC) values better than cloxacillin. Plumericin potently inhibited proliferation of two leukemic cancer cell lines: they were acute and chronic leukemic cancer cell lines, NB4 and K562, with the effective doses (ED50) of 4.35 ± 0.21 and 5.58 ± 0.35 μg/mL, respectively. In addition, the mechanism of growth inhibition in both cell lines was induced by apoptosis, together with G2/M arrest in K562 cells

    Detection of monoclonal immunoglobulin heavy chain gene rearrangement (FR3) in Thai malignant lymphoma by High Resolution Melting curve analysis

    Get PDF
    <p>Abstract</p> <p>Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction followed by heteroduplex has currently become standard whereas fluorescent fragment analysis (GeneScan) has been used for confirmation test. In this study, three techniques had been compared: thermocycler polymerase chain reaction (PCR) followed by heteroduplex and polyacrylamide gel electrophoresis, GeneScan analysis, and real time PCR with High Resolution Melting curve analysis (HRM). The comparison was carried out with DNA extracted from paraffin embedded tissues diagnosed as B- cell non-Hodgkin lymphoma. Specific PCR primers sequences for IgH gene variable region 3, including fluorescence labeled IgH primers were used and results were compared with HRM. In conclusion, the detection IgH gene rearrangement by HRM in the LightCycler System showed potential for distinguishing monoclonality from polyclonality in B-cell non-Hodgkin lymphoma.</p> <p>Introduction</p> <p>Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The incidence rate as reported by Ministry of Public Health is 3.1 per 100,000 population in female whereas the rate in male is 4.5 per 100,000 population <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. At Siriraj Hospital, the new cases diagnosed as malignant lymphoma were 214.6 cases/year <abbrgrp><abbr bid="B2">2</abbr></abbrgrp>. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Therefore, detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction (PCR) assay has recently become a standard laboratory test for discrimination of reactive from malignant clonal lymphoproliferation <abbrgrp><abbr bid="B3">3</abbr><abbr bid="B4">4</abbr></abbrgrp>. Analyzing DNA extracted from formalin-fixed, paraffin-embedded tissues by multiplex PCR techniques is more rapid, accurate and highly sensitive. Measuring the size of the amplicon from PCR analysis could be used to diagnose malignant lymphoma with monoclonal pattern showing specific and distinct bands detected on acrylamide gel electrophoresis. However, this technique has some limitations and some patients might require a further confirmation test such as GeneScan or fragment analysis <abbrgrp><abbr bid="B5">5</abbr><abbr bid="B6">6</abbr></abbrgrp>.</p> <p>GeneScan technique or fragment analysis reflects size and peak of DNA by using capillary gel electrophoresis. This technique is highly sensitive and can detect 0.5-1% of clonal lymphoid cells. It measures the amplicons by using various fluorescently labeled primers at forward or reverse sides and a specific size standard. Using a Genetic Analyzer machine and GeneMapper software (Applied Bioscience, USA), the monoclonal pattern revealed one single, sharp and high peak at the specific size corresponding to acrylamide gel pattern, whereas the polyclonal pattern showed multiple and small peak condensed at the same size standard. This technique is the most sensitive and accurate technique; however, it usually requires high technical experience and is also of high cost <abbrgrp><abbr bid="B7">7</abbr></abbrgrp>. Therefore, rapid and more cost effective technique are being sought.</p> <p>LightCycler PCR performs the diagnostic detection of amplicon via melting curve analysis within 2 hours with the use of a specific dye <abbrgrp><abbr bid="B8">8</abbr><abbr bid="B9">9</abbr></abbrgrp>. This dye consists of two types: one known as SYBR-Green I which is non specific and the other named as High Resolution Melting analysis (HRM) which is highly sensitive, more accurate and stable. Several reports demonstrated that this new instrument combined with DNA intercalating dyes can be used to discriminate sequence changes in PCR amplicon without manual handling of PCR product <abbrgrp><abbr bid="B10">10</abbr><abbr bid="B11">11</abbr></abbrgrp>. Therefore, current investigations using melting curve analysis are being developed <abbrgrp><abbr bid="B12">12</abbr><abbr bid="B13">13</abbr></abbrgrp>.</p> <p>In this study, three different techniques were compared to evaluate the suitability of LightCycler PCR with HRM as the clonal diagnostic tool for IgH gene rearrangement in B-cell non-Hogdkin lymphoma, i.e. thermocycler PCR followed by heteroduplex analysis and PAGE, GeneScan analysis and LightCycler PCR with HRM.</p

    Aberrant antigenic expression in extranodal NK/T-cell lymphoma: a multi-parameter study from Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extranodal NK/T-cell lymphoma, nasal type (ENKTL) is not common worldwide, but it is the most common T- and NK-cell lymphomas in many Asian countries. Immunophenotypic profiles were studied based on limited series. The authors, therefore, studied on ENKTL according to characterize immunophenotypic profiles as well as the distribution of EBV subtype and LMP-1 gene deletion.</p> <p>Methods</p> <p>By using tissue microarray (TMA), immunohistochemical study and EBV encoded RNA (EBER) in situ hybridization were performed. T-cell receptor (TCR) gene rearrangement, EBV subtyping, and LMP-1 gene deletion were studied on the available cases.</p> <p>Results</p> <p>There were 22 cases eligible for TMA. ENKTL were positive for CD3 (91%), CD5 (9%), CD7 (32%), CD4 (14%), CD56 (82%), TIA-1 (100%), granzyme B (95%), perforin (86%), CD45 (83%), CD30 (75%), Oct2 (25%), and IRF4/MUM1 (33%). None of them was positive for βF1, CD8, or CD57. TCR gene rearrangement was negative in all 18 tested cases. EBV was subtype A in all 15 tested cases, with 87% deleted LMP-1 gene. Cases lacking perforin expression demonstrated a significantly poorer survival outcome (p = 0.008).</p> <p>Conclusions</p> <p>The present study demonstrated TIA-1 and EBER as the two most sensitive markers. There were a few CD3 and/or CD56 negative cases noted. Interestingly, losses of CD45 and/or CD7 were not uncommon while Oct2 and IRF4/MUM1 could be positive in a subset of cases. Based on the present study in conjunction with the literature review, determination of PCR-based TCR gene rearrangement analysis might not be a useful technique for making diagnosis of ENKTL.</p

    Multimerization via Its Myosin Domain Facilitates Nuclear Localization and Inhibition of Core Binding Factor (CBF) Activities by the CBFβ-Smooth Muscle Myosin Heavy Chain Myeloid Leukemia Oncoprotein

    No full text
    In CBFβ-SMMHC, core binding factor beta (CBFβ) is fused to the α-helical rod domain of smooth muscle myosin heavy chain (SMMHC). We generated Ba/F3 hematopoietic cells expressing a CBFβ-SMMHC variant lacking 28 amino acids homologous to the assembly competence domain (ACD) required for multimerization of skeletal muscle myosin. CBFβ-SMMHC(ΔACD) multimerized less effectively than either wild-type protein or a variant lacking a different 28-residue segment. In contrast to the control proteins, the ΔACD mutant did not inhibit CBF DNA binding, AML1-mediated reporter activation, or G(1) to S cell cycle progression, the last being dependent upon activation of CBF-regulated genes. We also linked the CBFβ domain to 149 or 83 C-terminal CBFβ-SMMHC residues, retaining 86 or 20 amino acids N-terminal to the ACD. CBFβ-SMMHC(149C) multimerized and slowed Ba/F3 proliferation, whereas CBFβ-SMMHC(83C) did not. The majority of CBFβ-SMMHC and CBFβ-SMMHC(149C) was detected in the nucleus, whereas the ΔACD and 83C variants were predominantly cytoplasmic, indicating that multimerization facilitates nuclear retention of CBFβ-SMMHC. When linked to the simian virus 40 nuclear localization signal (NLS), a significant fraction of CBFβ-SMMHC(ΔACD) entered the nucleus but only mildly inhibited CBF activities. As NLS-CBFβ-SMMHC(83C) remained cytoplasmic, we directed the ACD to CBF target genes by linking it to the AML1 DNA binding domain or to full-length AML1. These AML1-ACD fusion proteins did not affect Ba/F3 proliferation, in contrast to AML1-ETO, which markedly slowed G(1) to S progression dependent upon the integrity of its DNA-binding domain. Thus, the ACD facilitates inhibition of CBF by mediating multimerization of CBFβ-SMMHC in the nucleus. Therapeutics targeting the ACD may be effective in acute myeloid leukemia cases associated with CBFβ-SMMHC expression
    corecore