31 research outputs found

    Molecular Identification and Geometric Morphometric Analysis of Haematobosca aberrans (Diptera: Muscidae)

    No full text
    The genus Haematobosca Bezzi, 1907 (Diptera: Muscidae) contains haematophagous flies of veterinary importance. A new fly species of this genus was recognised from northern Thailand based on morphological characters and described as Haematobosca aberrans Pont, Duvallet & Changbunjong, 2020. In the present study, the mitochondrial cytochrome c oxidase I (COI) gene was used to confirm the morphological identification of H. aberrans. In addition, landmark-based geometric morphometrics was used to determine sexual dimorphism. The molecular analysis was conducted with 10 COI sequences. The results showed that all sequences were 100% identical. The sequence was not highly similar to reference sequences from GenBank and did not match any identified species from Barcode of Life Data Systems (BOLD). Phylogenetic analysis clearly differentiated this species from other species within the subfamily Stomoxyinae. For geometric morphometric analysis, a total of 16 wing pictures were analysed using the landmark-based approach. The results showed significant differences in wing shape between males and females, with a cross-validated classification score of 100%. The allometric analysis showed that wing shape has no correlation with size. Therefore, the COI gene is effective in species identification of H. aberrans, and geometric morphometrics is also effective in determining sexual dimorphism

    Species Discrimination of <i>Stomoxys</i> Flies <i>S. bengalensis</i>, <i>S. calcitrans</i>, and <i>S. sitiens</i> (Diptera: Muscidae) Using Wing Geometric Morphometrics

    No full text
    The flies of the genus Stomoxys Geoffroy, 1762 (Diptera: Muscidae), are regarded as pests of veterinary and medical importance. In Thailand, Stomoxys calcitrans (Linnaeus, 1758) is the most abundant species and is widely distributed throughout the country. This Stomoxys species can coexist with two other morphologically similar species: Stomoxys bengalensis Picard, 1908, and Stomoxys sitiens Rondani, 1873. Hence, discriminating using morphological characteristics is difficult, especially if the specimen is damaged or loses its diagnostic characteristics. In this study, we evaluated the effectiveness of the landmark-based geometric morphometric (GM) approach to discriminate among the three Stomoxys spp.: S. bengalensis, S. calcitrans, and S. sitiens. Left-wing images of S. bengalensis (n = 120), S. calcitrans (n = 150), and S. sitiens (n = 155) were used for the GM analyses. The results of the wing shape analyses revealed that the GM approach was highly effective for discriminating three Stomoxys, with high accuracy scores ranging from 93.75% to 100%. This study adds to the evidence that landmark-based GM is an excellent alternative approach for discriminating Stomoxys species

    Evaluation of Modern Techniques for Species Identification of <i>Lutzia</i> Mosquitoes (Diptera: Culicidae) in Thailand: Geometric Morphometrics and DNA Barcoding

    No full text
    There are four species of Lutzia mosquitoes in Thailand, including Lutzia chiangmaiensis, Lt. fuscana, Lt. halifaxii, and Lt. vorax. The accurate species identification of adult Lutzia mosquitoes based on morphological features requires many body parts, including the abdominal terga and wing. However, species identification is difficult in the case of damaged specimens when some of their morphological character is missing due to transit or gathering in the field. Thus, we evaluated the efficacy of the landmark-based geometric morphometric (GM) approach for the discrimination of Lutzia species in Thailand. In addition, DNA barcoding was also used in parallel with the GM approach to identify the species. Larvae of Lutzia were collected, raised into adults, and identified based on their morphological characteristics. The validated reclassification test results clearly demonstrated that wing shape resulted in a high level of success in identification (correct identifications ranged from 92.50% to 100%); however, based on the DNA barcoding analyses, our results showed that it was poorly effective in identifying Lt. fuscana and Lt. halifaxii based on an overlap between the intraspecific and interspecific divergence. Moreover, our survey results provide updates on the distribution of Lt. chiangmaiensis and Lt. vorax in Thailand. This research will help medical entomologists more efficiently identify mosquitoes in the genus Lutzia, resulting in more effective mosquito control and surveillance

    Wing Phenotypic Variation among <i>Stomoxys calcitrans</i> (Diptera: Muscidae) Populations in Thailand

    No full text
    Stomoxys calcitrans (Linnaeus, 1758) (Diptera: Muscidae) is a cosmopolitan hematophagous ectoparasite of veterinary and medical importance. It is an important mechanical vector of several animal pathogens and can cause significant economic losses. However, the morphological variation of this species remains unknown. This study aimed to investigate the phenotypic variation in the wing size and shape of S. calcitrans populations in Thailand based on a landmark-based geometric morphometric approach. Specimens were collected from five populations in five geographical regions in Thailand. A total of 490 left wings of S. calcitrans (245 female and 245 male individuals) were used for geometric morphometric analysis. Wing size differences were detected between some populations of S. calcitrans, whereas wing shape differences were found among populations. Therefore, the phenotypic variation in S. calcitrans populations indicated that these populations are adaptive responses to local environmental pressures, suggesting the presence of phenotypic plasticity in this species

    Spent Coffee Grounds and Novaluron Are Toxic to <i>Aedes aegypti</i> (Diptera: Culicidae) Larvae

    No full text
    Aedes aegypti (Diptera: Culicidae) is a vector for mosquito-borne diseases worldwide. Insecticide resistance is a major concern in controlling this mosquito. We investigated the chemical compounds in wet and dry spent coffee grounds (wSCGs and dSCGs) and evaluated the efficacy of dSCGs, wSCGs, and novaluron on the mortality and adult emergence inhibition of Ae. aegypti. We found higher concentrations of chemical compounds in wSCGs than in dSCGs. The wSCGs and dSCGs both contained total phenolic compounds, total flavonoid compounds, caffeic acid, coumaric acid, protocatechuic acid, and vanillic acid. Complete mortality was observed after 48 h of exposure to 50 g/L wSCGs, while similar mortality was found after 120 h of exposure to 10 µg/L of novaluron. The sublethal dose was a concentration of wSCGs (5 g/L) and novaluron (0.01, 0.1, and 1 µg/L) combined that resulted in a larval mortality lower than twenty percent (at 72 h) to determine their synergistic effects. The death rate of larvae exposed in sublethal combination of wSCGs and novaluron was significantly higher than that of its stand-alone. The findings indicate that the combination of wSCGs and novaluron at sublethal concentrations had synergistic effects on the mortality of Ae. aegypti larvae and could be applied as an alternative control measure

    Contact and Fumigant Activities of <i>Citrus aurantium</i> Essential Oil against the Stable Fly <i>Stomoxys calcitrans</i> (Diptera: Muscidae)

    No full text
    The stable fly, Stomoxys calcitrans (L.), is a cosmopolitan hematophagous fly of medical and veterinary importance. It is widely considered a major livestock pest that can cause significant economic losses. This study aimed to evaluate the insecticidal activity of Citrus aurantium (L.) essential oil against S. calcitrans based on contact and fumigant toxicity tests. Chemical analysis by gas chromatography-mass spectrometry of the essential oil showed the dominance (93.79%) of limonene in the total essential oil composition. Furthermore, the insecticidal test results showed that the mortality of flies increased with concentration and time within 24 h of exposure. In the contact toxicity test, the median lethal dose was 105.88 µg/fly, while the 90% lethal dose was 499.25 µg/fly. As for the fumigant toxicity test, the median lethal concentration was 13.06 mg/L air, and the 90% lethal concentration was 43.13 mg/L air. These results indicate that C. aurantium essential oil exhibits insecticidal activity against S. calcitrans. Therefore, it can be used as an alternative to synthetic insecticides for achieving stable fly control

    Haematobosca spp. images for geometric morphometric analysis (Thailand)

    No full text
     A total of 160 specimens of Haematobosca spp. (H. sanguinolenta, H. aberrans and unknown). The image used for Geometric morphometric analysis project. Research project name: Application of modern geometric morphometrics for species identification of Haematobosca spp. (Diptera: Muscidae) in Thailand</p

    Nanoencapsulation of Acetamiprid by Sodium Alginate and Polyethylene Glycol Enhanced Its Insecticidal Efficiency

    No full text
    Nanoformulation has been considered one of the newly applied methods in integrated pest management strategies. In this research, a conventional neonicotinoid insecticide acetamiprid was nanoencapsulated via AL (Sodium Alginate) and PEG (Polyethylene Glycol) and tested against the elm leaf beetle Xanthogaleruca luteola. The synthesized particles had spherical-like morphology and nanoscale based on TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering). The encapsulation efficiency and loading percentages of acetamiprid in AL and PEG were 92.58% and 90.15%, and 88.46% and 86.79%, respectively. Leaf discs treated with different formulations by the leaf-dipping method were used for oral toxicity assays. The LC50 values (Lethal Concentration to kill 50% of insect population) of acetamiprid and Al- and PEG-nanoencapsulated formulations on third-instar larvae were 0.68, 0.04, and 0.08 ppm, respectively. Based on the highest relative potency, AL-encapsulated acetamiprid had the most toxicity. The content of energy reserve protein, glucose, and triglyceride and the activity of detoxifying enzymes esterase and glutathione S-transferase of the larvae treated by LC50 values of nanoformulations were also decreased. According to the current findings, the nanoencapsulation of acetamiprid by Al and PEG can increase its insecticidal performance in terms of lethal and sublethal toxicity

    Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.)

    No full text
    The lesser grain borer, Rhyzopertha dominica (F.), causes damage to stored grains resulting in both quantitative and qualitative losses. The use of synthetic fumigants in the management of stored-product pests resulted in undesirable side effects such as environmental contamination and threat to human and animal health. In this study, the lethal and sublethal effects of essential oils from four Eucalyptus species, E. microtheca, E. procera, E. spatulata, and E. torquata were studied against R. dominica adults. Gas chromatographic&ndash;mass spectral analysis of the essential oils was carried out, in which terpenes such as 1,8-cineole and globulol were abundant in essential oils. The pest was susceptible to the fumigation of the essential oils and, considering concentrations and exposure times (24, 48, and 72 h), had significant effects on the pest mortality. The total protein, glycogen, and lipid contents and digestive amylolytic and proteolytic activities of the adults treated with tested essential oils were reduced. The consumption index, relative consumption rate, and relative growth rate were also reduced in the treated adults. According to the insecticidal effects on the adults of R. dominica, the essential oils of E. microtheca, E. procera, E. spatulata, and E. torquata can be candidates for further investigations as grain protectant agents

    H. sanguinolenta Chiang mai Male

    No full text
    A total of 50 specimens of H. sanguinolenta (male) were collected from Chiang mai, Thailand. The image used for Geometric morphometric analysis project.  Research project name: Application of modern geometric morphometrics for species identification of Haematobosca spp. (Diptera: Muscidae) in Thailand</p
    corecore