5 research outputs found

    āļœāļĨāļ‚āļ­āļ‡āļāļēāļĢāđāļšāđˆāļ‡āļāļĨāļļāđˆāļĄāļĒāđˆāļ­āļĒāļĢāļ°āļ”āļąāļšāđ‚āļĄāđ€āļĨāļāļļāļĨāđƒāļ™āļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļ—āļĩāđˆāļĢāļļāļāđ€āļ‚āđ‰āļēāļŠāļąāđ‰āļ™āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­ āđ‚āļ”āļĒāļāļēāļĢāļˆāļąāļ”āļāļĨāļļāđˆāļĄāļĢāļ°āļ”āļąāļšāļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāļ‚āļ­āļ‡āļĒāļĩāļ™āļ•āđˆāļ­āļāļēāļĢāļ—āļģāļ™āļēāļĒāļāļēāļĢāļĢāļ­āļ”āļŠāļĩāļžāđāļĨāļ°āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļāļēāļĢāļĢāļąāļāļĐāļē

    No full text
    Thesis (Ph.D., Health Sciences, Faculty of Medicine)--Prince of Songkla University, 2022Recently discovered molecular classifications for urothelial bladder cancer appeared to be promising prognostic and predictive biomarkers. It is a major challenge for clinical work to study the molecular subtypes of BC. Outcome of bladder cancer (BC) treatment still need establish and explored the molecular subtypes of bladder cancer and potential clusters. The present study was conducted to evaluate the prognostic impact of molecular subtypes assessed by mRNA expression in a consecutively collected, mono-institutional muscle-invasive bladder cancer (MIBC) cohort, performed by unsupervised clustering and validate subtypes of our institutional cohort with data from The Cancer Genome Atlas (TCGA) and possible to correlate the mRNA expression with tumor molecular subtype membership. Our overall goal was to determine whether mRNA expression have shown significant difference in specific molecular subtypes and correlation with clinical outcomes. Molecular subtyping of muscle-invasive bladder cancer (MIBC) predicts disease progression and treatment response. However, present subtyping techniques are based primarily on transcriptomic analysis, which is relatively expensive. Subtype classification of protein levels by immunohistochemistry (IHC) are more affordable and feasible to perform in a general pathology laboratory. Recent data demonstrated that GATA3, CK20, CK5/6, and CK14 protein levels were correlated with MIBC molecular subtypes. We aimed to evaluate the correlation of those IHC markers with survival outcomes after radical cystectomy in Thai patients. Moreover, we aim to evaluate molecular subtypings by mRNA expression analysis. vii Method 30 MIBC were pathologically re-evaluated and molecular subtypes were assessed on mRNA. Fresh-frozen primary tumor samples from a single cohort in Songklanagarind hospital who underwent radical cystectomy between 2015 and 2020. First, we screened the expression profiles of differentially genes expression and of BC by comparing DEG and principle component analysis with K-mean clustering. Moreover, external validation set from the Cancer Genome Atlas (TCGA) database was done by using significant gene expression. We used the complete TCGA dataset with our subtype gene expression and assign TCGA’s bladder cancers to molecular subtypes. Taken together, we explored the molecular subtypes and their outcome treatment of BC. Institutional cohort (n= 30 MIBC) and The Cancer Genome Atlas (TCGA)- dataset (n=231 MIBC) were subtyped using unsupervised genes and analyzed for predicting of survival, cancer-specific survival (CSS), overall-survival (OS), and recurrence–free survival (RFS). Moreover, we evaluated the IHC-based subtypes in MIBC, as classified by GATA3, CK20, CK5/6, and CK14 expression in 132 MIBC patients who underwent radical cystectomy followed by adjuvant chemotherapy (2008–2016). All individual markers and clinicopathological parameters were analyzed against treatment outcomes after radical cystectomy and some selected tissues were sent for whole transcriptome sequencing and clustering from mRNA expression. Result Unsupervised consensus hierarchical clustering applied to gene expression data and identified 3 molecular subtypes. These subtypes were associated with distinct clinicopathological characteristics and molecular expression. The clustering was validated in the TCGA dataset. We identified different clinical characteristics and identified 3 molecular subtypes MIBC specimens from cohort dataset successfully. In multivariable analyses, N- stage, T-stage, M-stage and/or age predicted CSS/OS and/or cisplatin- based adjuvant- chemotherapy response. In the TCGA-dataset, publications report that subtypes risk-stratify patients for OS. For IHC study section, the result showed that the mean patient age was 65.6 years, and the male to female ratio was 6.8:1. Positive IHC expression rates of GATA3, CK20, CK5/6, and CK14 were 80.3%, 50.8%, 42.4%, and 28.0%, respectively. The 5-year overall survival (OS) was 27.0% (95% confidence interval (CI) 19.6%–35.0%). Only GATA3 and CK5/6 were significantly associated with survival outcome (log-rank p-values = 0.004 and 0.02). GATA3 and CK5/6 were then used to establish subtypes, which were luminal (GATA+ viii and CK5/6−, 38.6%), basal (GATA− and CK5/6+, 12.9%), mixed (GATA+ and CK5/6+, 37.9%), and double-negative (GATA− and CK5/6−, 10.6%). Patients with the mixed subtype had a significantly better 5-year OS at 42.8%, whereas patients with the double-negative subtype had the worst prognosis among the four groups (5-year OS 7.14%). In the multivariable analysis, lymph node status and subtype independently predicted survival probability. The double-negative subtype had a hazard ratio of 3.29 (95% CI 1.71–6.32). Conclusion The results further reinforce the conclusion that the molecular subtypes of bladder cancer are distinct disease entities with specific molecular subtype. In our cohorts/subtyping- classifications, clinical and novel molecular subtypes for predicting outcome of treatment. For immunohistochemistry subtyping using GATA3 and CK5/6 was applicable in MIBCs, and patients with the double-negative subtype were at the highest risk and may require more intensive therapy and mRNA subtyping by mRNA expression must showed the significant relationship with survival rate.āļšāļ—āļ™āļģ: āļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļŠāļ™āļīāļ”āļ—āļĩāđˆāļĢāļļāļāđ€āļ‚āđ‰āļēāļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­ (muscle invasive bladder cancer) āđ€āļ›āđ‡āļ™āļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļŠāļ™āļīāļ”āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļĢāļļāļ™āđāļĢāļ‡ āļĒāļēāļāļ•āđˆāļ­āļāļēāļĢāļĢāļąāļāļĐāļē āđāļĨāļ°āļ­āļąāļ•āļĢāļēāļāļēāļĢāļĢāļ­āļ”āļŠāļĩāļžāļ•āđˆāļģ āđƒāļ™āļ›āļąāļˆāļˆāļļāļšāļąāļ™ āļāļēāļĢāļĻāļķāļāļĐāļēāđƒāļ™āļĢāļ°āļ”āļąāļšāđ‚āļĄāđ€āļĨāļāļļāļĨāđ€āļžāļ·āđˆāļ­āļŦāļēāļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āļĄāļ°āđ€āļĢāđ‡āļ‡āļ—āļĩāđˆāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ­āļąāļ•āļĢāļēāļĢāļ­āļ”āļŠāļĩāļžāđāļĨāļ°āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļĒāļēāļˆāļķāļ‡āļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāļ•āđˆāļ­āļāļēāļĢāļĢāļąāļāļĐāļē āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļŠāļīāđ‰āļ™āļ™āļĩāđ‰āļˆāļķāļ‡āļŠāļ™āđƒāļˆāļĻāļķāļāļĐāļēāļāļēāļĢāđāļšāđˆāļ‡āļāļĨāļļāđˆāļĄāļĒāđˆāļ­āļĒāļ‚āļ­āļ‡āļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļŠāļ™āļīāļ”āļ—āļĩāđˆāļĢāļļāļāđ€āļ‚āđ‰āļēāļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­āđ€āļžāļ·āđˆāļ­āļŦāļēāļĢāļđāļ›āđāļšāļšāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ—āļĩāđˆāļ­āļēāļˆāļŠāđˆāļ§āļĒāđƒāļ™āļāļēāļĢāļĢāļąāļāļĐāļēāļ—āļĩāđˆāļĄāļēāļāļĒāļīāđˆāļ‡āļ‚āļķāđ‰āļ™ āļāļēāļĢāļĻāļķāļāļĐāļēāļ–āļķāļ‡āļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāļ‚āļ­āļ‡ mRNA āđƒāļ™āļĢāļđāļ›āđāļšāļš transcriptome āļˆāļ°āđƒāļŦāđ‰āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāļŠāļđāļ‡ āļ—āļēāļ‡āļ—āļĩāļĄāļ§āļīāļˆāļąāļĒāļˆāļķāļ‡āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļĢāļđāļ›āđāļšāļšāļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāđƒāļ™āļĢāļđāļ›āđāļšāļš transcriptome āļ„āļ§āļšāļ„āļđāđˆāļāļąāļšāļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāļĢāļ°āļ”āļąāļšāđ‚āļ›āļĢāļ•āļĩāļ™āļ‚āļ­āļ‡āļ•āļąāļ§āļšāđˆāļ‡āļŠāļĩāđ‰āļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļž 4 āļŠāļ™āļīāļ”āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļĢāļēāļĒāļ‡āļēāļ™āļ§āđˆāļēāļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļāļēāļĢāđāļšāđˆāļ‡āļŠāļ™āļīāļ”āļ‚āļ­āļ‡āđ€āļ‹āļĨāļĨāđŒāļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļŠāļ™āļīāļ”āļĢāļļāļāđ€āļ‚āđ‰āļēāļŠāļąāđ‰āļ™āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­āđƒāļ™āļĢāļđāļ›āđāļšāļš transcriptome analysis āđ„āļ”āđ‰āđāļāđˆ GATA3, CK20, CK5/6 āđāļĨāļ° CK14 āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļĢāļđāļ›āđāļšāļšāļāļēāļĢāļĻāļķāļāļĐāļēāļĢāļēāļĒāļĒāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āđ‚āļ”āļĒāđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄāļ‚āđ‰āļ­āļĄāļđāļĨāļœāļđāđ‰āļ›āđˆāļ§āļĒāļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļ—āļĩāđˆāļĢāļļāļāđ€āļ‚āđ‰āļēāļŠāļąāđ‰āļ™āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­ āđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄāļĄāļđāļĨāļ›āļąāļˆāļˆāļąāļĒāļ—āļēāļ‡āļ„āļĨāļīāļ™āļīāļāļˆāļēāļāđ€āļ§āļŠāļĢāļ°āđ€āļšāļĩāļĒāļ™āđāļĨāļ°āļ›āļąāļˆāļˆāļąāļĒāļ—āļēāļ‡āļ„āļĨāļīāļ™āļīāļ āļ—āļģāļāļēāļĢāļ™āļģāļŠāļīāđ‰āļ™āđ€āļ™āļ·āđ‰āļ­āļĄāļ°āđ€āļĢāđ‡āļ‡āļĄāļēāļ—āļģāļāļēāļĢāļĒāđ‰āļ­āļĄāļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāļĢāļ°āļ”āļąāļšāđ‚āļ›āļĢāļ•āļĩāļ™ 4 āļ•āļąāļ§ GATA3, CK20, CK5/6 āđāļĨāļ° CK14 āļ”āđ‰āļ§āļĒāļāļēāļĢāļ—āļģāđāļšāļš tissue microarray āđāļĨāļ°āļĄāļĩāļāļēāļĢāļŠāđˆāļ‡āļ•āļĢāļ§āļˆāļŠāļīāđ‰āļ™āđ€āļ™āļ·āđ‰āļ­āļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļŠāđˆāļ‡āļ•āļĢāļ§āļˆ mRNA āļ”āđ‰āļ§āļĒāļāļēāļĢāđ€āļāđ‡āļšāļŠāļ·āđ‰āļ™āđ€āļ™āļ·āđ‰āļ­āļŠāļ™āļīāļ” Fresh frozen tissue āđāļĨāļ°āļŠāđˆāļ‡āļ•āļĢāļ§āļˆāļŦāļēāļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāļ‚āļ­āļ‡āļĒāļĩāļ™āļĢāļ°āļ”āļąāļš RNA āļ—āļąāđ‰āļ‡āđāļĒāļāđāļšāđˆāļ‡āļāļĨāļļāđˆāļĄāļĒāđˆāļ­āļĒāļĢāļ°āļ”āļąāļšāđ‚āļĄāđ€āļĨāļāļļāļĨāđƒāļ™āļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļ—āļĩāđˆāļĢāļļāļāđ€āļ‚āđ‰āļēāļŠāļąāđ‰āļ™āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­ (molecular subtypings of MIBC) āđ‚āļ”āļĒāļāļēāļĢāļˆāļąāļ”āļāļĨāļļāđˆāļĄāļĢāļ°āļ”āļąāļšāļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāļ‚āļ­āļ‡āļĒāļĩāļ™āļ•āđˆāļ­āļāļēāļĢāļ—āļģāļ™āļēāļĒāļāļēāļĢāļĢāļ­āļ”āļŠāļĩāļž āđāļĨāļ°āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļāļēāļĢāļĢāļąāļāļĐāļē āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āđ‚āļ”āļĒāļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļˆāļēāļāļˆāļģāļ™āļ§āļ™āļŠāļīāđ‰āļ™āđ€āļ™āļ·āđ‰āļ­āļ—āļĩāđˆāđƒāļŠāđ‰āļĒāđ‰āļ­āļĄ IHC āļˆāļģāļ™āļ§āļ™ 132 āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡ āļ­āļēāļĒāļļāđ€āļ‰āļĨāļĩāđˆāļĒāļ‚āļ­āļ‡āļœāļđāđ‰āļ›āđˆāļ§āļĒāļ„āļ·āļ­ 65.6 āļ›āļĩ āļ­āļąāļ•āļĢāļēāļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāļ‚āļ­āļ‡ IHC āļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļšāļ§āļāļ‚āļ­āļ‡ GATA3, CK20, CK5/6 āđāļĨāļ° CK14 āļ„āļ·āļ­ 80.3%, 50.8%, 42.4% āđāļĨāļ° 28.0% āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļĄāļĩāđ€āļžāļĩāļĒāļ‡ GATA3 āđāļĨāļ° CK5/6 āđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāļāļąāļšāļœāļĨāļĨāļąāļžāļ˜āđŒāļāļēāļĢāļĢāļ­āļ”āļŠāļĩāļ§āļīāļ• (āļ„āđˆāļē log-rank p-values = 0.004 āđāļĨāļ° 0.02) āļˆāļēāļāļ™āļąāđ‰āļ™ GATA3 āđāļĨāļ° CK5/6 āļ–āļđāļāđƒāļŠāđ‰āđ€āļžāļ·āđˆāļ­āļŠāļĢāđ‰āļēāļ‡āļŠāļ™āļīāļ”āļĒāđˆāļ­āļĒ āļ‹āļķāđˆāļ‡āđ„āļ”āđ‰āđāļāđˆ āļāļĨāļļāđˆāļĄ luminal (GATA+ āđāļĨāļ° CK5/6−, 38.6%) āļāļĨāļļāđˆāļĄ basal (GATA− āđāļĨāļ° CK5/6+, 12.9%) āļāļĨāļļāđˆāļĄāļœāļŠāļĄ (GATA+ āđāļĨāļ° CK5/6+, 37.9%) āđāļĨāļ°āļāļĨāļļāđˆāļĄ double negative (GATA− āđāļĨāļ° CK5/6−, 10.6%) āļœāļđāđ‰āļ›āđˆāļ§āļĒāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļŠāļ™āļīāļ”āļĒāđˆāļ­āļĒāđāļšāļšāļœāļŠāļĄāļĄāļĩāļ­āļąāļ•āļĢāļēāļāļēāļĢāļĢāļ­āļ”āļŠāļĩāļ§āļīāļ•āļ—āļĩāđˆ 5 āļ›āļĩāļ—āļĩāđˆāļ”āļĩāļ‚āļķāđ‰āļ™āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāļ—āļĩāđˆ 42.8% āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļœāļđāđ‰āļ›āđˆāļ§āļĒāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļŠāļ™āļīāļ”āļĒāđˆāļ­āļĒāđāļšāļš double-negative āļĄāļĩāļāļēāļĢāļžāļĒāļēāļāļĢāļ“āđŒāđ‚āļĢāļ„āļ—āļĩāđˆāđāļĒāđˆāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™āļŠāļĩāđˆāļāļĨāļļāđˆāļĄāļĄāļĩāļ­āļąāļ•āļĢāļēāļāļēāļĢāļĢāļ­āļ”āļŠāļĩāļ§āļīāļ•āļ—āļĩāđˆ 5 āļ›āļĩ 7.14% āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™āļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āđ€āļ™āļ·āđ‰āļ­āļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļĢāļļāļāđ€āļ‚āđ‰āļēāļŠāļąāđ‰āļ™āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­āļˆāļģāļ™āļ§āļ™ 30 āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡ āļāļēāļĢāđāļšāđˆāļ‡āļāļĨāļļāđˆāļĄāļĒāđˆāļ­āļĒ mRNA āđ€āļ›āđ‡āļ™ unsupervised clustering āļ­āļ­āļāđ€āļ›āđ‡āļ™ 3 āļāļĨāļļāđˆāļĄāļ„āļ·āļ­ cluster 1 āļ–āļķāļ‡ 3 āļ‹āļķāđˆāļ‡āđāļ•āđˆāļĨāļ°āļāļĨāļļāđˆāļĄāļĄāļĩāļāļēāļĢāđāļŠāļ”āļ‡āļ­āļ­āļāļ‚āļ­āļ‡āļĒāļĩāļ™āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ āđāļĨāļ°āļ—āļēāļ‡āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāđ„āļ”āđ‰āđƒāļŠāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļœāļđāđ‰āļ›āđˆāļ§āļĒāļˆāļēāļāļāļēāļ™āļ‚āđ‰āļ­āļĄāļđāļĨ TCGA āđ€āļ‚āđ‰āļēāđ„āļ›āđ€āļžāļīāđˆāļĄāđ€āļ•āļīāļĄ āļ‹āļķāđˆāļ‡āļžāļšāļ§āđˆāļēāļāļēāļĢāļˆāļąāļ”āļāļĨāļļāđˆāļĄ transcriptome āđƒāļ™āļĢāļđāļ›āđāļšāļšāļ™āļĩāđ‰āļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ­āļąāļ•āļĢāļēāļāļēāļĢāļĢāļ­āļ”āļŠāļĩāļ§āļīāļ•āđƒāļ™āļœāļđāđ‰āļ›āđˆāļ§āļĒāļĄāļ°āđ€āļĢāđ‡āļ‡āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļąāļŠāļŠāļēāļ§āļ°āđāļšāļšāļĢāļļāļāđ€āļ‚āđ‰āļēāļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­ āļŠāļĢāļļāļ›āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļāļēāļĢāđāļšāđˆāļ‡āļāļĨāļļāđˆāļĄāļĒāđˆāļ­āļĒāđ‚āļ”āļĒāđƒāļŠāđ‰ GATA3 āđāļĨāļ° CK5/6 āđƒāļŠāđ‰āđ„āļ”āđ‰āļāļąāļš MIBCs āđāļĨāļ°āļœāļđāđ‰āļ›āđˆāļ§āļĒāļ—āļĩāđˆāļĄāļĩ subtype āđāļšāļš double-negative āļĄāļĩāļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļŠāļđāļ‡āļŠāļļāļ” āļŠāđˆāļ§āļ™āļāļēāļĢāđāļšāđˆāļ‡āļāļĨāļļāđˆāļĄāļĒāđˆāļ­āļĒāļ‚āļ­āļ‡ mRNA āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ‚āļ”āļĒāđƒāļŠāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļēāļāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ—āļĩāđˆāļĻāļķāļāļĐāļēāđāļšāđˆāļ‡āļ­āļ­āļāļāļĨāļļāđˆāļĄāđƒāļŦāļĄāđˆāđ„āļ”āđ‰āđ€āļ›āđ‡āļ™ 3 āļāļĨāļļāđˆāļĄāļĒāđˆāļ­āļĄāļ—āļĩāđˆāļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāđāļĨāļ°āļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļāļąāļšāļ‚āđ‰āļ­āļĄāļđāļĨāļœāļđāđ‰āļ›āđˆāļ§āļĒāļˆāļēāļāļāļēāļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļ­āļ·āđˆāļ™ āļŠāļēāļĄāļēāļĢāļ–āļžāļšāļĢāļđāļ›āđāļšāļšāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ­āļąāļ•āļĢāļēāļāļēāļĢāļĢāļ­āļ”āļŠāļĩāļžāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāļ—āļēāļ‡āļŠāļ–āļīāļ•

    Prostatic schwannoma discovered after laparoscopic radical prostatectomy: A case report with literature review

    No full text
    Background Schwannomas originating in the prostate are extremely rare. We present a case of prostatic schwannoma in a 66‐year‐old male with lower urinary tract symptoms. Preoperative evaluation revealed a prostatic mass, and the definitive diagnosis was made through laparoscopic radical prostatectomy. Case presentation A 66‐year‐old male presented with persistent lower urinary tract symptoms for 5 years and a prostate‐specific antigen level of 0.63 ng/mL. MRI showed a well‐defined solid cystic mass in the posterolateral basal right peripheral zone, causing superior displacement of the right seminal vesicle. Laparoscopic radical prostatectomy was performed, confirming a periprostatic schwannoma. Conclusion This case highlights the rarity of prostatic schwannomas and their association with lower urinary tract symptoms. MRI plays a crucial role in identifying prostatic masses, while laparoscopic radical prostatectomy can serve as a diagnostic and therapeutic approach for prostatic schwannomas. Increased awareness of this rare entity is essential for accurate diagnosis and optimal management

    Molecular Subtyping in Muscle-Invasive Bladder Cancer on Predicting Survival and Response of Treatment

    No full text
    Molecular classifications for urothelial bladder cancer appear to be promising in disease prognostication and prediction. This study investigated the novel molecular subtypes of muscle invasive bladder cancer (MIBC). Tumor samples and normal tissues of MIBC patients were submitted for transcriptome sequencing. Expression profiles were clustered using K-means clustering and principal component analysis. The molecular subtypes were also applied to The Cancer Genome Atlas (TCGA) dataset and analyzed for clinical outcome correlation. Three molecular subtypes of MIBC were discovered, clusters A, B, and C. The most differentially upregulated genes in cluster A were BDKRB1, EDNRA, AVPR1A, PDGFRB, and TNC, while the most upregulated genes in cluster C were collagen-related genes, PDGFRB, and PRKG1. For cluster B, COL6A3, COL1A2, COL6A2, tenascin C, and fibroblast growth factor 2 were statistically suppressed. When the centroids of clustering on PCA were applied to TCGA data, the clustering significantly predicted survival outcomes. Cluster B had the best overall survival (OS), and cluster C was associated with poor OS but exhibited the best response to perioperative chemotherapy. Among all groups, cluster B had a better pathologic response to neoadjuvant chemotherapy (40%). Based on the results of the present study, the novel clusters of subtype MIBC appear potentially suitable for integration into clinical practice

    Eucalyptus-Mediated Synthesized Silver Nanoparticles-Coated Urinary Catheter Inhibits Microbial Migration and Biofilm Formation

    No full text
    Catheter-associated urinary tract infections (CAUTIs) are significant complications among catheterized patients, resulting in increased morbidity, mortality rates, and healthcare costs. Foley urinary catheters coated with synthesized silver nanoparticles (AgNPs) using Eucalyptus camaldulensis leaf extract were developed using a green chemistry principle. In situ-deposited AgNPs with particle size ranging between 20 and 120 nm on the catheter surface were illustrated by scanning electron microscopy. Atomic force microscopy revealed the changes in surface roughness after coating with nanoparticles. The coated catheter could significantly inhibit microbial adhesion and biofilm formation performed in pooled human urine-supplemented media to mimic a microenvironment during infections (p 0.05). AgNPs-coated catheter exhibited broad-spectrum antimicrobial activity against important pathogens, causing CAUTIs with no cytotoxic effects on HeLa cells. A reduction in microbial viability in biofilms was observed under confocal laser scanning microscopy. A catheter bridge model demonstrated complete prevention of Proteus mirabilis migration by the coated catheter. Significant inhibition of ascending motility of Escherichia coli and P. mirabilis along the AgNPs-coated catheter was demonstrated in an in vitro bladder model (p 0.05). The results suggested that the AgNPs-coated urinary catheter could be applied as an alternative strategy to minimize the risk of CAUTIs by preventing bacterial colonization and biofilm formation

    Comparing pentafecta outcomes between nerve sparing and non nerve sparing robot-assisted radical prostatectomy in a propensity score-matched study

    No full text
    Abstract Pentafecta (continence, potency, cancer control, free surgical margins, and no complications) is an important outcome of prostatectomy. Our objective was to assess the pentafecta achievement between nerve-spring and non-nerve-sparing robot-assisted radical prostatectomy (RARP) in a large single-center cohort. The study included 1674 patients treated with RARP between August 2009 and November 2022 to assess the clinical outcomes. Cox regression analyses were performed to evaluate the prognostic significance of RARP for pentafecta achievement, and 1:1 propensity score matching (PSM) was performed between the nerve-sparing and non-nerve-sparing to test the validity of the results. Pentafecta definition included continence, which was defined as the use of zero pads; potency, which was defined as the ability to achieve and maintain satisfactory erections or ones firm enough for sexual activity and sexual intercourse. The biochemical recurrence rate was defined as two consecutive PSA levels > 0.2 ng/mL after RARP; 90-day Clavien–Dindo complications â‰Ī 3a; and a negative surgical pathologic margin. The median follow-up period was 61.3 months (IQR 6–159 months). A multivariate Cox regression analysis demonstrated that pentafecta achievement was significantly associated with nerve-sparing (NS) approach (1188 patients) (OR 4.16; 95% CI 2.51–6.9), p < 0.001), unilateral nerve preservation (983 patients) (OR 3.83; 95% CI 2.31–6.37, p < 0.001) and bilateral nerve preservation (205 patients) (OR 7.43; 95% CI 4.14–13.36, p < 0.001). After propensity matching, pentafecta achievement rates in the NS (476 patients) and non-NS (476 patients) groups were 72 (15.1%) and 19 (4%), respectively. (p < 0.001). NS in RARP offers a superior advantage in pentafecta achievement compared with non-NS RARP. This validation study provides the pentafecta outcome after RARP associated with nerve-sparing in clinical practice
    corecore