40,568 research outputs found

    Field-Induced Magnetic Order and Simultaneous Lattice Deformation in TlCuCl3

    Full text link
    We report the results of Cu and Cl nuclear magnetic resonance experiments (NMR) and thermal expansion measurements in magnetic fields in the coupled dimer spin system TlCuCl3. We found that the field-induced antiferromagnetic transition as confirmed by the splitting of NMR lines is slightly discontinuous. The abrupt change of the electric field gradient at the Cl sites, as well as the sizable change of the lattice constants, across the phase boundary indicate that the magnetic order is accompanied by simultaneous lattice deformation.Comment: 4 pages, 5 figure

    The magnetization process of the spin-one triangular-lattice Heisenberg antiferromagnet

    Full text link
    We apply the coupled cluster method and exact diagonalzation to study the uniform susceptibility and the ground-state magnetization curve of the triangular-lattice spin-1 Heisenberg antiferromagnet. Comparing our theoretical data for the magnetization curve with recent measurements on the s=1 triangular lattice antiferromagnet Ba3NiSb2O9 we find a very good agreement.Comment: 2 pages, 3 figure

    Vacuum Energy Density for Massless Scalar Fields in Flat Homogeneous Spacetime Manifolds with Nontrivial Topology

    Full text link
    Although the observed universe appears to be geometrically flat, it could have one of 18 global topologies. A constant-time slice of the spacetime manifold could be a torus, Mobius strip, Klein bottle, or others. This global topology of the universe imposes boundary conditions on quantum fields and affects the vacuum energy density via Casimir effect. In a spacetime with such a nontrivial topology, the vacuum energy density is shifted from its value in a simply-connected spacetime. In this paper, the vacuum expectation value of the stress-energy tensor for a massless scalar field is calculated in all 17 multiply-connected, flat and homogeneous spacetimes with different global topologies. It is found that the vacuum energy density is lowered relative to the Minkowski vacuum level in all spacetimes and that the stress-energy tensor becomes position-dependent in spacetimes that involve reflections and rotations.Comment: 25 pages, 11 figure

    DNA in nanopore-counterion condensation and coion depletion

    Full text link
    Molecular dynamics simulations are used to study the equilibrium distribution of monovalent ions in a nanopore connecting two water reservoirs separated by a membrane, both for the empty pore and that with a single stranded DNA molecule inside. In the presence of DNA, the counterions condense on the stretched macromolecule effectively neutralizing it, and nearly complete depletion of coions from the pore is observed. The implications of our results for experiments on DNA translocation through alpha-hemolysin nanopores are discussed.Comment: 8 pages, 2 figure

    Holography and Cosmological Singularities

    Full text link
    Certain null singularities in ten dimensional supergravity have natural holographic duals in terms of Matrix Theory and generalizations of the AdS/CFT correspondence. In many situations the holographic duals appear to be well defined in regions where the supergravity develops singularities. We describe some recent progress in this area.Comment: Anomaly equation corrected. References adde

    The Orbit and Position of the X-ray Pulsar XTE J1855-026 - an Eclipsing Supergiant System

    Get PDF
    A pulse timing orbit has been obtained for the X-ray binary XTE J1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of ~16Mo together with the detection of an extended near-total eclipse confirm that the primary star is a supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A. = 18h 55m 31.3s}, decl. = -02o 36' 24.0" (2000) with an estimated systematic uncertainty of less than 12". A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.Comment: Accepted for publication in the Astrophysical Journa

    Cohomology of Lie superalgebras and of their generalizations

    Full text link
    The cohomology groups of Lie superalgebras and, more generally, of color Lie algebras, are introduced and investigated. The main emphasis is on the case where the module of coefficients is non-trivial. Two general propositions are proved, which help to calculate the cohomology groups. Several examples are included to show the peculiarities of the super case. For L = sl(1|2), the cohomology groups H^1(L,V) and H^2(L,V), with V a finite-dimensional simple graded L-module, are determined, and the result is used to show that H^2(L,U(L)) (with U(L) the enveloping algebra of L) is trivial. This implies that the superalgebra U(L) does not admit of any non-trivial formal deformations (in the sense of Gerstenhaber). Garland's theory of universal central extensions of Lie algebras is generalized to the case of color Lie algebras.Comment: 50 pages, Latex, no figures. In the revised version the proof of Lemma 5.1 is greatly simplified, some references are added, and a pertinent result on sl(m|1) is announced. To appear in the Journal of Mathematical Physic

    Maximum likelihood estimates of pairwise rearrangement distances

    Get PDF
    Accurate estimation of evolutionary distances between taxa is important for many phylogenetic reconstruction methods. In the case of bacteria, distances can be estimated using a range of different evolutionary models, from single nucleotide polymorphisms to large-scale genome rearrangements. In the case of sequence evolution models (such as the Jukes-Cantor model and associated metric) have been used to correct pairwise distances. Similar correction methods for genome rearrangement processes are required to improve inference. Current attempts at correction fall into 3 categories: Empirical computational studies, Bayesian/MCMC approaches, and combinatorial approaches. Here we introduce a maximum likelihood estimator for the inversion distance between a pair of genomes, using the group-theoretic approach to modelling inversions introduced recently. This MLE functions as a corrected distance: in particular, we show that because of the way sequences of inversions interact with each other, it is quite possible for minimal distance and MLE distance to differently order the distances of two genomes from a third. This has obvious implications for the use of minimal distance in phylogeny reconstruction. The work also tackles the above problem allowing free rotation of the genome. Generally a frame of reference is locked, and all computation made accordingly. This work incorporates the action of the dihedral group so that distance estimates are free from any a priori frame of reference.Comment: 21 pages, 7 figures. To appear in the Journal of Theoretical Biolog

    Intrinsic Josephson Effect in the Layered Two-dimensional t-J Model

    Full text link
    The intrinsic Josephson effect in the high-Tc superconductors is studied using the layered two-dimensional t-J model. The d.c.Josephson current which flows perpendicular to the t-J planes is obtained within the mean-field approximation and the Gutzwiller approximation. We find that the Josephson current has its maximum near the optimum doping region as a function of the doping rate.Comment: 4 pages, 3 figure

    Electrophoresis of a rod macroion under polyelectrolyte salt: Is mobility reversed for DNA?

    Full text link
    By molecular dynamics simulation, we study the charge inversion phenomenon of a rod macroion in the presence of polyelectrolyte counterions. We simulate electrophoresis of the macroion under an applied electric field. When both counterions and coions are polyelectrolytes, charge inversion occurs if the line charge density of the counterions is larger than that of the coions. For the macroion of surface charge density equal to that of the DNA, the reversed mobility is realized either with adsorption of the multivalent counterion polyelectrolyte or the combination of electrostatics and other mechanisms including the short-range attraction potential or the mechanical twining of polyelectrolyte around the rod axis.Comment: 8 pages, 5 figures, Applied Statistical Physics of Molecular Engineering (Mexico, 2003). Journal of Physics: Condensed Matters, in press (2004). Journal of Physics: Condensed Matters, in press (2004
    • …
    corecore