212 research outputs found

    Observations of [C II] 158 micron Line and Far-infrared Continuum Emission toward the High-latitude Molecular Clouds in Ursa Major

    Get PDF
    We report the results of a rocket-borne observation of [C II] 158\micron line and far-infrared continuum emission at 152.5\micron toward the high latitude molecular clouds in Ursa Major. We also present the results of a follow-up observation of the millimeter ^{12}CO J=1-0 line over a selected region observed by the rocket-borne experiment. We have discovered three small CO cloudlets from the follow-up ^{12}CO observations. We show that these molecular cloudlets, as well as the MBM clouds(MBM 27/28/29/30), are not gravitationally bound. Magnetic pressure and turbulent pressure dominate the dynamic balance of the clouds. After removing the HI-correlated and background contributions, we find that the [C II] emission peak is displaced from the 152.5\micron and CO peaks, while the 152.5\micron continuum emission is spatially correlated with the CO emission. We interpret this behavior by attributing the origin of [C II] emission to the photodissociation regions around the molecular clouds illuminated by the local UV radiation field. We also find that the ratio of the molecular hydrogen column density to velocity-integrated CO intensity is 1.19+-0.29x10^{20} cm^{-2} (K kms^{-1})^{-1} from the FIR continuum and the CO data. The average [C II] /FIR intensity ratio over the MBM clouds is 0.0071, which is close to the all sky average of 0.0082 reported by the FIRAS on the COBE satellite. The average [C II]/CO ratio over the same regions is 420, which is significantly lower than that of molecular clouds in the Galactic plane.Comment: 15 pages, LaTeX (aaspp4.sty) + 2 tables(apjpt4.sty) + 6 postscript figures; accepted for publication in the Astrophysical Journal; Astrophys. J. in press (Vol. 490, December 1, 1997 issue

    Increased fibrosis and impaired intratumoral accumulation of macromolecules in a murine model of pancreatic cancer co-administered with FGF-2

    Get PDF
    Pancreatic cancer is notorious for its poor prognosis. The histopathologic characteristic of pancreatic ductal adenocarcinoma (PDAC), which is the most common type of pancreatic cancer, is fibrosis within tumor tissue. Although fibrosis within tumor tissue is thought to impede drug therapy by interfering with the intratumoral accumulation of anti-tumor drugs, this hypothesis has yet to be proven directly in preclinical models. Here, we evaluated the effect of enhanced fibrosis on intratumoral accumulation of macromolecular drugs by increasing fibrosis in a murine tumor model of subcutaneously xenografted BxPC-3, a human PDAC cell line. When fibroblast growth factor-2 (FGF-2) was co-administered upon BxPC-3 inoculation, stromal fibrotic area was increased and was characterized by augmented murine collagen accumulation compared to inoculation of BxPC-3 alone, which correlated with increased monocyte/macrophage contents in the tumor tissues. We further discovered that the intratumoral accumulation of intravenously administrated fluorescein isothiocyanate-dextran of 2,000,000 Da (2 MDa) was significantly reduced in the FGF-2 co-administered tumors despite unaltered hyaluronan accumulation and pericyte coverage of the tumor neovasculature and increased lymphangiogenesis. Finally, we found that FGF-2 co-administered tumors are more refractory to macromolecular drug therapy using nab-paclitaxel (Abraxane). The model established and analyzed in this study, characterized by increased fibrotic component, provides a preclinical animal model suited to predict the intratumoral accumulation of macromolecular drugs and to evaluate the efficacy of drugs targeting the tumor stroma

    Potential inhibitory effects of low-dose thoron inhalation and ascorbic acid administration on alcohol-induced hepatopathy in mice

    Get PDF
    Although thoron inhalation exerts antioxidative effects in several organs, there are no reports on whether it inhibits oxidative stress-induced damage. In this study, we examined the combined effects of thoron inhalation and ascorbic acid (AA) administration on alcohol-induced liver damage. Mice were subjected to thoron inhalation at 500 or 2000 Bq/m(3) and were administered 50% ethanol (alcohol) and 300 mg/kg AA. Results showed that although alcohol administration increased the levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) in the serum, the combination of thoron inhalation (500 Bq/m(3)) and AA administration 24 h after alcohol administration effectively inhibited alcohol-induced liver damage. The combination of thoron inhalation (500 Bq/m(3)) and AA administration 24 h after alcohol administration increased catalase (CAT) activity. Alcohol administration significantly decreased glutathione (GSH) levels in the liver. The GSH content in the liver after 2000 Bq/m(3) thoron inhalation was lower than that after 500 Bq/m(3) thoron inhalation. These findings suggest that the combination of thoron inhalation at 500 Bq/m(3) and AA administration has positive effects on the recovery from alcohol-induced liver damage. The results also suggested that thoron inhalation at 500 Bq/m(3) was more effective than that at 2000 Bq/m(3), possibly because of the decrease in GSH content in the liver. In conclusion, the combination of thoron inhalation at 500 Bq/m(3) and AA administration promoted an early recovery from alcohol-induced liver damage

    Comparison of antioxidative effects between radon and thoron inhalation in mouse organs

    Get PDF
    Radon therapy has been traditionally performed globally for oxidative stress-related diseases. Many researchers have studied the beneficial effects of radon exposure in living organisms. However, the effects of thoron, a radioisotope of radon, have not been fully examined. In this study, we aimed to compare the biological effects of radon and thoron inhalation on mouse organs with a focus on oxidative stress. Male BALB/c mice were randomly divided into 15 groups: sham inhalation, radon inhalation at a dose of 500 Bq/m3 or 2000 Bq/m3, and thoron inhalation at a dose of 500 Bq/m3 or 2000 Bq/m3 were carried out. Immediately after inhalation, mouse tissues were excised for biochemical assays. The results showed a significant increase in superoxide dismutase and total glutathione, and a significant decrease in lipid peroxide following thoron inhalation under several conditions. Additionally, similar effects were observed for different doses and inhalation times between radon and thoron. Our results suggest that thoron inhalation also exerts antioxidative effects against oxidative stress in organs. However, the inhalation conditions should be carefully analyzed because of the differences in physical characteristics between radon and thoron

    Evaluation of the redox state in mouse organs following radon inhalation

    Get PDF
    Radon inhalation activates antioxidative functions in mouse organs, thereby contributing to inhibition of oxidative stress-induced damage. However, the specific redox state of each organ after radon inhalation has not been reported. Therefore, in this study, we evaluated the redox state of various organs in mice following radon inhalation at concentrations of 2 or 20 kBq/m(3) for 1, 3 or 10 days. Scatter plots were used to evaluate the relationship between antioxidative function and oxidative stress by principal component analysis (PCA) of data from control mice subjected to sham inhalation. The results of principal component (PC) 1 showed that the liver and kidney had high antioxidant capacity; the results of PC2 showed that the brain, pancreas and stomach had low antioxidant capacities and low lipid peroxide (LPO) content, whereas the lungs, heart, small intestine and large intestine had high LPO content but low antioxidant capacities. Furthermore, using the PCA of each obtained cluster, we observed altered correlation coefficients related to glutathione, hydrogen peroxide and LPO for all groups following radon inhalation. Correlation coefficients related to superoxide dismutase in organs with a low antioxidant capacity were also changed. These findings suggested that radon inhalation could alter the redox state in organs; however, its characteristics were dependent on the total antioxidant capacity of the organs as well as the radon concentration and inhalation time. The insights obtained from this study could be useful for developing therapeutic strategies targeting individual organs

    Radon inhalation decreases DNA damage induced by oxidative stress in mouse organs via the activation of antioxidative functions

    Get PDF
    Radon inhalation decreases the level of lipid peroxide (LPO); this is attributed to the activation of antioxidative functions. This activation contributes to the beneficial effects of radon therapy, but there are no studies on the risks of radon therapy, such as DNA damage. We evaluated the effect of radon inhalation on DNA damage caused by oxidative stress and explored the underlying mechanisms. Mice were exposed to radon inhalation at concentrations of 2 or 20 kBq/m(3) (for one, three, or 10 days). The 8-hydroxy-2 '-deoxyguanosine (8-OHdG) levels decreased in the brains of mice that inhaled 20 kBq/m(3) radon for three days and in the kidneys of mice that inhaled 2 or 20 kBq/m(3) radon for one, three or 10 days. The 8-OHdG levels in the small intestine decreased by approximately 20-40% (2 kBq/m(3) for three days or 20 kBq/m(3) for one, three or 10 days), but there were no significant differences in the 8-OHdG levels between mice that inhaled a sham treatment and those that inhaled radon. There was no significant change in the levels of 8-oxoguanine DNA glycosylase, which plays an important role in DNA repair. However, the level of Mn-superoxide dismutase (SOD) increased by 15-60% and 15-45% in the small intestine and kidney, respectively, following radon inhalation. These results suggest that Mn-SOD probably plays an important role in the inhibition of oxidative DNA damage

    Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness

    Get PDF
    Desmoplasia is a hallmark of pancreatic cancer and consists of fibrotic cells and secreted extracellular matrix (ECM) components. Various in vitro three-dimensional (3D) models of desmoplasia have been reported, but little is known about the relevant thickness of the engineered fibrotic tissue. We thus measured the thickness of fibrotic tissue in human pancreatic cancer, as defined by the distance from the blood vessel wall to tumor cells. We then generated a 3D fibrosis model with a thickness reaching the clinically observed range using pancreatic stellate cells (PSCs), the main cellular constituent of pancreatic cancer desmoplasia. Using this model, we found that Collagen fiber deposition was increased and Fibronectin fibril orientation drastically remodeled by PSCs, but not normal fibroblasts, in a manner dependent on Transforming Growth Factor (TGF)-β/Rho-Associated Kinase (ROCK) signaling and Matrix Metalloproteinase (MMP) activity. Finally, by targeting Secreted Protein, Acidic and Rich in Cysteine (SPARC) by siRNA, we found that SPARC expression in PSCs was necessary for ECM remodeling. Taken together, we developed a 3D fibrosis model of pancreatic cancer with a clinically relevant thickness and observed aberrant SPARC-dependent ECM remodeling in cancer-derived PSCs
    corecore