1,229 research outputs found

    THE SUPERMARKET - FRIEND OR FOE OF THE COMMUNITY

    Get PDF
    Creates awareness of the "total supermarket" and its effect on the environment. Also suggests future changes to make the supermarket a better neighbor.Community/Rural/Urban Development, Marketing,

    A Framework for Structured Distributed Object Computing

    Get PDF
    This paper presents a four-faceted framework for distributed applications that use worldwide networks connecting large numbers of people, software tools, monitoring instruments, and control devices. We describe a class of applications, identify requirements for a framework that supports these applications, and propose a design fulfilling those requirements. We discuss some initial experiences using the framework, and compare our design with other approaches

    Feasibility of the Assessment of Cholesterol Crystals in Human Macrophages Using Micro Optical Coherence Tomography

    Get PDF
    The presence of cholesterol crystals is a hallmark of atherosclerosis, but until recently, such crystals have been considered to be passive components of necrotic plaque cores. Recent studies have demonstrated that phagocytosis of cholesterol crystals by macrophages may actively precipitate plaque progression via an inflammatory pathway, emphasizing the need for methods to study the interaction between macrophages and crystalline cholesterol. In this study, we demonstrate the feasibility of detecting cholesterol in macrophages in situ using Micro-Optical Coherence Tomography (µOCT), an imaging modality we have recently developed with 1-µm resolution. Macrophages containing cholesterol crystals frequently demonstrated highly scattering constituents in their cytoplasm on µOCT imaging, and µOCT was able to evaluate cholesterol crystals in cultured macrophage cells. Our results suggest that µOCT may be useful for the detection and characterization of inflammatory activity associated with cholesterol crystals in the coronary artery

    X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    Get PDF
    The infrared-luminous galaxy NGC3256 is a classic example of a merger induced nuclear starburst system. We find here that it is the most X-ray luminous star-forming galaxy yet detected (~10^42 ergs/s). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a "superwind" which accounts for ~20% of the observed soft (kT~0.3 keV) X-ray emission. Our model for the broadband X-ray emission of NGC3256 contains two additional components: a warm thermal plasma (kT~0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of ~0.7. We find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse-Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift.Comment: 31 pages (tex, epsf), 8 figures (postscript files), accepted for publication in Part 1 of The Astrophysical Journa

    Conformations of closed DNA

    Full text link
    We examine the conformations of a model for a short segment of closed DNA. The molecule is represented as a cylindrically symmetric elastic rod with a constraint corresponding to a specification of the linking number. We obtain analytic expressions leading to the spatial configuration of a family of solutions representing distortions that interpolate between the circular form of DNA and a figure-eight form that represents the onset of interwinding. We are also able to generate knotted loops. We suggest ways to use our approach to produce other configurations relevant to studies of DNA structure. The stability of the distorted configurations is assessed, along with the effects of fluctuations on the free energy of the various configurations.Comment: 39 pages in REVTEX with 14 eps figures. Submitted to Phys. Rev. E. This manuscript updates, expands and revises, to a considerable extent, a previously posted manuscript, entitled "Conformations of Circular DNA," which appeared as cond-mat/970104

    Nanocavity-mediated Purcell enhancement of Er in TiO2_2 thin films grown via atomic layer deposition

    Full text link
    The use of trivalent erbium (Er3+^{3+}), typically embedded as an atomic defect in the solid-state, has widespread adoption as a dopant in telecommunications devices and shows promise as a spin-based quantum memory for quantum communication. In particular, its natural telecom C-band optical transition and spin-photon interface makes it an ideal candidate for integration into existing optical fiber networks without the need for quantum frequency conversion. However, successful scaling requires a host material with few intrinsic nuclear spins, compatibility with semiconductor foundry processes, and straightforward integration with silicon photonics. Here, we present Er-doped titanium dioxide (TiO2_2) thin film growth on silicon substrates using a foundry-scalable atomic layer deposition process with a wide range of doping control over the Er concentration. Even though the as-grown films are amorphous, after oxygen annealing they exhibit relatively large crystalline grains, and the embedded Er ions exhibit the characteristic optical emission spectrum from anatase TiO2_2. Critically, this growth and annealing process maintains the low surface roughness required for nanophotonic integration. Finally, we interface Er ensembles with high quality factor Si nanophotonic cavities via evanescent coupling and demonstrate a large Purcell enhancement (300) of their optical lifetime. Our findings demonstrate a low-temperature, non-destructive, and substrate-independent process for integrating Er-doped materials with silicon photonics. At high doping densities this platform can enable integrated photonic components such as on-chip amplifiers and lasers, while dilute concentrations can realize single ion quantum memories.Comment: 5 figure

    Phosphorylation of Ubc9 by Cdk1 Enhances SUMOylation Activity

    Get PDF
    Increasing evidence has pointed to an important role of SUMOylation in cell cycle regulation, especially for M phase. In the current studies, we have obtained evidence through in vitro studies that the master M phase regulator CDK1/cyclin B kinase phosphorylates the SUMOylation machinery component Ubc9, leading to its enhanced SUMOylation activity. First, we show that CDK1/cyclin B, but not many other cell cycle kinases such as CDK2/cyclin E, ERK1, ERK2, PKA and JNK2/SAPK1, specifically enhances SUMOylation activity. Second, CDK1/cyclin B phosphorylates the SUMOylation machinery component Ubc9, but not SAE1/SAE2 or SUMO1. Third, CDK1/cyclin B-phosphorylated Ubc9 exhibits increased SUMOylation activity and elevated accumulation of the Ubc9-SUMO1 thioester conjugate. Fourth, CDK1/cyclin B enhances SUMOylation activity through phosphorylation of Ubc9 at serine 71. These studies demonstrate for the first time that the cell cycle-specific kinase CDK1/cyclin B phosphorylates a SUMOylation machinery component to increase its overall SUMOylation activity, suggesting that SUMOylation is part of the cell cycle program orchestrated by CDK1 through Ubc9
    • …
    corecore