6,811 research outputs found
Study of the polyoxymethylene and its sputtered fragments: Implications for comets
Laboratory mass spectra of sputtered polyoxymethylene (POM) reveals a fragmentation pattern consistent with observed peaks in the PICCA experiment on board the Giotto spacecraft. Both commercially available POM and radiation synthesized POM have been used in the studies. Synthesized POM was identified using infrared absorption spectra after proton irradiation of H2CO ice on silicate grains at 20 K. Laboratory results suggest that similar type sputtering is a possible mechanism for removing species from comet grains
EXAFS Study on Local Structure of Iron Crystal by the Use of Asymmetrical Monochromator and PSPC
The EXAFS spectroscopy equipment constructed from an asymmetrical cut flat monochromator and PSPC is applied to the structural determination of pure α-iron which has small difference (0.038nm) in the first and second nearest neighbour distance. The efficiency of the curve fitting method for the two shell model of known structure material (α-iron) is discussed, in addition to describing the details of the experimental procedure of our new type of spectrometer and of the EXAFS data analysis
New Bardeen-Cooper-Schrieffer-type theory at finite temperature with particle-number conservation
We formulate a new Bardeen-Cooper-Schrieffer (BCS)-type theory at finite
temperature, by deriving a set of variational equations of the free energy
after the particle-number projection. With its broad applicability, this theory
can be a useful tool for investigating the pairing phase transition in finite
systems with the particle-number conservation. This theory provides effects of
the symmetry-restoring fluctuation (SRF) for the pairing phenomena in finite
fermionic systems, distinctively from those of additional quantum fluctuations.
It is shown by numerical calculations that the phase transition is compatible
with the conservation in this theory, and that the SRF shifts up the critical
temperature (). This shift of occurs due to
reduction of degrees-of-freedom in canonical ensembles, and decreases only
slowly as the particle-number increases (or as the level spacing narrows), in
contrast to the conventional BCS theory.Comment: 10 pages including 3 figures, to be published in Phys. Rev.
Effects of particle-number conservation on heat capacity of nuclei
By applying the particle-number projection to the finite-temperature BCS
theory, the -shaped heat capacity, which has recently been claimed to be a
fingerprint of the superfluid-to-normal phase transition in nuclei, is
reexamined. It is found that the particle-number (or number-parity) projection
gives -shapes in the heat capacity of nuclei which look qualitatively
similar to the observed ones. These -shapes are accounted for as effects of
the particle-number conservation on the quasiparticle excitations, and occur
even when we keep the superfluidity at all temperatures by assuming a constant
gap in the BCS theory. The present study illustrates significance of the
conservation laws in studying phase transitions of finite systems.Comment: RevTeX4, 12 pages including 5 figures (1 color figure), to be
published in PR
On the Navier-Stokes equations with rotating effect and prescribed outflow velocity
We consider the equations of Navier-Stokes modeling viscous fluid flow past a
moving or rotating obstacle in subject to a prescribed velocity
condition at infinity. In contrast to previously known results, where the
prescribed velocity vector is assumed to be parallel to the axis of rotation,
in this paper we are interested in a general outflow velocity. In order to use
-techniques we introduce a new coordinate system, in which we obtain a
non-autonomous partial differential equation with an unbounded drift term. We
prove that the linearized problem in is solved by an evolution
system on for . For this we use
results about time-dependent Ornstein-Uhlenbeck operators. Finally, we prove,
for and initial data , the
existence of a unique mild solution to the full Navier-Stokes system.Comment: 18 pages, to appear in J. Math. Fluid Mech. (published online first
Explicit pionic degrees of freedom in deuteron photodisintegration in the Delta-resonance region
Photodisintegration of the deuteron above pi-threshold is studied in a
coupled channel approach including N-Delta- and pi-d-channels with pion
retardation in potentials and exchange currents.Comment: 5 pages latex including 6 postscript figures, talk at the 15th Int.
Conf. on Few-Body Problems in Physics, Groningen, Netherlands, 22-26 July
1997. To be published in Nucl. Phys.
- …