233 research outputs found

    Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from <it>Cistus </it>sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol.</p> <p>Methods</p> <p>The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography.</p> <p>Results</p> <p>The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides.</p> <p>Conclusions</p> <p>It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts <it>via </it>the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food.</p

    The Pathogenic Potential of Campylobacter concisus Strains Associated with Chronic Intestinal Diseases

    Get PDF
    Campylobacter concisus has garnered increasing attention due to its association with intestinal disease, thus, the pathogenic potential of strains isolated from different intestinal diseases was investigated. A method to isolate C. concisus was developed and the ability of eight strains from chronic and acute intestinal diseases to adhere to and invade intestinal epithelial cells was determined. Features associated with bacterial invasion were investigated using comparative genomic analyses and the effect of C. concisus on host protein expression was examined using proteomics. Our isolation method from intestinal biopsies resulted in the isolation of three C. concisus strains from children with Crohn's disease or chronic gastroenteritis. Four C. concisus strains from patients with chronic intestinal diseases can attach to and invade host cells using mechanisms such as chemoattraction to mucin, aggregation, flagellum-mediated attachment, “membrane ruffling”, cell penetration and damage. C. concisus strains isolated from patients with chronic intestinal diseases have significantly higher invasive potential than those from acute intestinal diseases. Investigation of the cause of this increased pathogenic potential revealed a plasmid to be responsible. 78 and 47 proteins were upregulated and downregulated in cells infected with C. concisus, respectively. Functional analysis of these proteins showed that C. concisus infection regulated processes related to interleukin-12 production, proteasome activation and NF-κB activation. Infection with all eight C. concisus strains resulted in host cells producing high levels of interleukin-12, however, only strains capable of invading host cells resulted in interferon-γ production as confirmed by ELISA. These findings considerably support the emergence of C. concisus as an intestinal pathogen, but more significantly, provide novel insights into the host immune response and an explanation for the heterogeneity observed in the outcome of C. concisus infection. Moreover, response to infection with invasive strains has substantial similarities to that observed in the inflamed mucosa of Crohn's disease patients

    Identification of Cancer Cell-Line Origins Using Fluorescence Image-Based Phenomic Screening

    Get PDF
    Universal phenotyping techniques that can discriminate among various states of biological systems have great potential. We applied 557 fluorescent library compounds to NCI's 60 human cancer cell-lines (NCI-60) to generate a systematic fluorescence phenotypic profiling data. By the kinetic fluorescence intensity analysis, we successfully discriminated the organ origin of all the 60 cell-lines

    Cytokine preconditioning of engineered cartilage provides protection against interleukin-1 insult

    Get PDF
    Research reported in this publication was supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number R01AR60361, R01AR061988, P41EB002520). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. ART was supported by a National Science Foundation Graduate Fellowship

    Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Get PDF
    BACKGROUND: Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (O(L)) and the Arg tRNA. METHODS: In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. RESULTS: Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. CONCLUSION: None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors

    Anti-Cancer Effect of HIV-1 Viral Protein R on Doxorubicin Resistant Neuroblastoma

    Get PDF
    Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX). To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working

    An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches.</p> <p>Results</p> <p>In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA) will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay.</p> <p>Conclusions</p> <p>By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at <url>http://www.laurenzi.net</url>.</p
    corecore