18,427 research outputs found
Explicit robust schemes for implementation of a class of principal value-based constitutive models: Symbolic and numeric implementation
The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic constitutive models is addressed. To this end, special purpose functions (running under MACSYMA) are developed for the symbolic derivation, evaluation, and automatic FORTRAN code generation of explicit expressions for the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid over the entire deformation range, since the singularities resulting from repeated principal-stretch values have been theoretically removed. The required computational algorithms are outlined, and the resulting FORTRAN computer code is presented
Explicit robust schemes for implementation of general principal value-based constitutive models
The issue of developing effective and robust schemes to implement general hyperelastic constitutive models is addressed. To this end, special purpose functions are used to symbolically derive, evaluate, and automatically generate the associated FORTRAN code for the explicit forms of the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid for the entire deformation range. The analytical form of these explicit expressions is given here for the case in which the strain-energy potential is taken as a nonseparable polynomial function of the principle stretches
On the symbolic manipulation and code generation for elasto-plastic material matrices
A computerized procedure for symbolic manipulations and FORTRAN code generation of an elasto-plastic material matrix for finite element applications is presented. Special emphasis is placed on expression simplifications during intermediate derivations, optimal code generation, and interface with the main program. A systematic procedure is outlined to avoid redundant algebraic manipulations. Symbolic expressions of the derived material stiffness matrix are automatically converted to RATFOR code which is then translated into FORTRAN statements through a preprocessor. To minimize the interface problem with the main program, a template file is prepared so that the translated FORTRAN statements can be merged into the file to form a subroutine (or a submodule). Three constitutive models; namely, von Mises plasticity, Drucker-Prager model, and a concrete plasticity model, are used as illustrative examples
Shear and Layer Breathing Modes in Multilayer MoS2
We study by Raman scattering the shear and layer breathing modes in
multilayer MoS2. These are identified by polarization measurements and symmetry
analysis. Their positions change with the number of layers, with different
scaling for odd and even layers. A chain model explains the results, with
general applicability to any layered material, and allows one to monitor their
thickness
Optical properties of in the normal state
We present the optical reflectance and conductivity spectra for non-oxide
antiperovskite superconductor at different temperatures. The
reflectance drops gradually over a large energy scale up to 33,000 cm,
with the presence of several wiggles. The reflectance has slight temperature
dependence at low frequency but becomes temperature independent at high
frequency. The optical conductivity shows a Drude response at low frequencies
and four broad absorption features in the frequency range from 600 to
33,000 . We illustrate that those features can be well understood from
the intra- and interband transitions between different components of Ni 3d
bands which are hybridized with C 2p bands. There is a good agreement between
our experimental data and the first-principle band structure calculations.Comment: 4 pages, to be published in Phys. Rev.
The hyperon mean free paths in the relativistic mean field
The - and -hyperon mean free paths in nuclei are firstly
calculated in the relativistic mean field (RMF) theory. The real parts of the
optical potential are derived from the RMF approach, while the imaginary parts
are obtained from those of nucleons with the relations:
and . With the
assumption, the depth of the imaginary potential for is
3.5 MeV, and for is 7 MeV at
low incident energy. We find that, the hyperon mean free path decreases with
the increase of the hyperon incident energies, from 200 MeV to 800 MeV; and in
the interior of the nuclei, the mean free path is about fm for
, and about fm for , depending on the hyperon
incident energy.Comment: 5 figures, 6 page
- …