95 research outputs found
Effects of treatment of acromegaly with Sandostatin® LAR® on lipolytic enzymes and cholesteryl ester transfer protein activities
published_or_final_versio
The clinical genetics of multiple endocrine neoplasia type 1 in Chinese
published_or_final_versio
High prevalence of malnutrition and vitamin A deficiency among schoolchildren of rural areas in Malaysia using a multi-school assessment approach
Childhood malnutrition is known as a public health concern globally. The present study aims to assess the anthropometry and blood biochemical status of rural primary schoolchildren in Malaysia. A total of 776 children (7-11 years old) from ten rural primary schools from five states were included in this study. Nutritional outcomes were assessed based on sex, age group and school categories among the children (median age: 9 years (P25:8, P75:10)). The overall prevalence of malnutrition was 53·4 %. Vitamin A deficiency (VAD) was recorded at 20·6 and 39·8 % based on retinol and retinol-binding protein (RBP) levels, respectively. Anaemia, iron deficiency (ID), iron-deficiency anaemia (IDA) and elevated inflammation were found at 14·9, 17·9, 9·1 and 11·5 %, respectively. Malnutrition, VAD, anaemia, ID, IDA and elevated inflammation were more prevalent among Orang Asli (OA) schoolchildren compared with Non-Orang Asli schoolchildren. Higher occurrences of VAD and anaemia were also found among children aged <10 years. Retinol, RBP, α-carotene, ferritin and haemoglobin levels were lower among undernourished children. Besides, overweight/obese children exhibited a higher level of high-sensitivity C-reactive protein. Multivariate analysis demonstrated that OA school children (adjusted OR (AOR): 6·1; 95 % CI 4·1, 9·0) and IDA (AOR: 3·6; 95 % CI 1·9, 6·6) were associated with stunting among this population. The present study revealed that malnutrition, micronutrient deficiencies and anaemia are prevalent among rural primary schoolchildren in Malaysia, especially those from OA schools and younger age children (<10 years). Hence, more appropriate and targeted measures are needed to improve the nutritional status of these children
Red palm olein-enriched biscuit supplementation lowers Ascaris lumbricoides reinfection at 6-month after anthelmintic treatment among schoolchildren with vitamin A deficiency (VAD)
Notwithstanding the global efforts made to control intestinal parasitic infections, soil-transmitted helminth (STH) infections are still one of the most prevalent infections globally, especially in developing countries. A double-blinded, randomized controlled trial was conducted on 343 primary schoolchildren (8–12 years old) with vitamin A deficiency (VAD) in rural areas of Malaysia to investigate the effects of red palm olein (RPO)-enriched biscuits on STH reinfection rates and infection intensities. The effects of the RPO-enriched biscuits (experimental group, n = 153) and palm olein (PO)-enriched biscuits (control group, n = 190), were assessed at 3- and 6-month after the administration of complete triple-dose albendazole (one dose of 400 mg for three consecutive days). The overall STH infection rate at baseline was recorded at 65.6%. At 6-month, a significantly lower reinfection rate of A. lumbricoides was observed in the experimental group (35.3%) compared to the control group (60.0%) (P0.05). These findings suggest the potential beneficial effects of RPO-enriched biscuit supplementation on the reinfection of A. lumbricoides, which could be attributed to its high carotenoids content by enhancing host immune response and mucosal epithelium integrity. However, further studies are warranted to confirm whether RPO supplementation could result in similar parasite-specific beneficial effects in other community settings, as well as to explore the underlying mechanisms
In Vitro Selection of a DNA-Templated Small-Molecule Library Reveals a Class of Macrocyclic Kinase Inhibitors
DNA-templated organic synthesis enables the translation of DNA sequences into synthetic small-molecule libraries suitable for in vitro selection. Previously, we described the DNA-templated multistep synthesis of a 13 824-membered small-molecule macrocycle library. Here, we report the discovery of small molecules that modulate the activity of kinase enzymes through the in vitro selection of this DNA-templated small-molecule macrocycle library against 36 biomedically relevant protein targets. DNA encoding selection survivors was amplified by PCR and identified by ultra-high-throughput DNA sequencing. Macrocycles corresponding to DNA sequences enriched upon selection against several protein kinases were synthesized on a multimilligram scale. In vitro assays revealed that these macrocycles inhibit (or activate) the kinases against which they were selected with IC50 values as low as 680 nM. We characterized in depth a family of macrocycles enriched upon selection against Src kinase, and showed that inhibition was highly dependent on the identity of macrocycle building blocks as well as on backbone conformation. Two macrocycles in this family exhibited unusually strong Src inhibition selectivity even among kinases closely related to Src. One macrocycle was found to activate, rather than inhibit, its target kinase, VEGFR2. Taken together, these results establish the use of DNA-templated synthesis and in vitro selection to discover small molecules that modulate enzyme activities, and also reveal a new scaffold for selective ATP-competitive kinase inhibition.Chemistry and Chemical Biolog
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
- …