25 research outputs found

    One is More: Diverse Perspectives within a Single Network for Efficient DRL

    Full text link
    Deep reinforcement learning has achieved remarkable performance in various domains by leveraging deep neural networks for approximating value functions and policies. However, using neural networks to approximate value functions or policy functions still faces challenges, including low sample efficiency and overfitting. In this paper, we introduce OMNet, a novel learning paradigm utilizing multiple subnetworks within a single network, offering diverse outputs efficiently. We provide a systematic pipeline, including initialization, training, and sampling with OMNet. OMNet can be easily applied to various deep reinforcement learning algorithms with minimal additional overhead. Through comprehensive evaluations conducted on MuJoCo benchmark, our findings highlight OMNet's ability to strike an effective balance between performance and computational cost.Comment: Preprin

    Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference

    Full text link
    Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: https://latent-consistency-models.github.io

    Measurement and Prediction: Coupling Coordination of Finance and Air Environment

    No full text
    This study finds that the comprehensive development degree (CDD) of the finance subsystem is less fluctuated than that of the air environment subsystem, and both subsystems share similarities in spatial distributions. The coupling coordination degrees (CCD) keep fluctuating with varied development directions and extents in different regions; besides, the eastern regions are higher than the western ones for the coupling coordination degrees. In the next years, the coordination degrees of the regions will have different tendencies: despite of the former fluctuation trends, regions in the coordination range will have upward trends, while those in the transition range will be likely to decline. The results are useful in proposing corresponding measures to promote the coordination development between finance and air environment

    STK24 Promotes Progression of LUAD and Modulates the Immune Microenvironment

    No full text
    Objective. Recent studies have shown that serine/threonine-protein kinase 24 (STK24) plays an important role in cancer development. However, the significance of STK24 in lung adenocarcinoma (LUAD) remains to be determined. This study is aimed at investigating the significance of STK24 in LUAD. Methods. STK24 was silenced and overexpressed by siRNAs and lentivirus, respectively. Cellular function was assessed by CCK8, colony formation, transwell, apoptosis, and cell cycle. mRNA and protein abundance was checked by qRT-PCR and WB assay, respectively. Luciferase reporter activity was evaluated to examine the regulation of KLF5 on STK24. Various public databases and tools were applied to investigate the immune function and clinical significance of STK24 in LUAD. Results. We found that STK24 was overexpressed in lung adenocarcinoma (LUAD) tissues. High expression of STK24 predicted poor survival of LUAD patients. In vitro, STK24 enhanced the proliferation and colony growth ability of A549 and H1299 cells. STK24 knockdown induced apoptosis and cell cycle arrest at G0/G1 phase. Furthermore, Krüppel-like factor 5 (KLF5) activated STK24 in lung cancer cells and tissues. Enhanced lung cancer cell growth and migration triggered by KLF5 could be reversed by silencing of STK24. Finally, the bioinformatics results showed that STK24 may be involved in the regulation of the immunoregulatory process of LUAD. Conclusion. KLF5 upregulation of STK24 contributes to cell proliferation and migration in LUAD. Moreover, STK24 may participate in the immunomodulatory process of LUAD. Targeting KLF5/STK24 axis may be a potential therapeutic strategy for LUAD

    Interference of intrinsic curvature of DNA by DNA-intercalating agents

    No full text
    It has been demonstrated in our studies that the intrinsic curvature of DNA can be easily interrupted by low concentrations of chloroquine and ethidium bromide. In addition, the changes of DNA curvature caused by varying the concentration of these two DNA intercalators can be readily verified through using an atomic force microscope

    BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes

    No full text
    Abstract Epigenetic modifications of histones are associated with development and pathogenesis of disease. Existing approaches cannot provide insights into long-range interactions and represent the average chromatin state. Here we describe BIND&MODIFY, a method using long-read sequencing for profiling histone modifications and transcription factors on individual DNA fibers. We use recombinant fused protein A-M.EcoGII to tether methyltransferase M.EcoGII to protein binding sites to label neighboring regions by methylation. Aggregated BIND&MODIFY signal matches bulk ChIP-seq and CUT&TAG. BIND&MODIFY can simultaneously measure histone modification status, transcription factor binding, and CpG 5mC methylation at single-molecule resolution and also quantifies correlation between local and distal elements
    corecore