103 research outputs found

    High-quality InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes

    Get PDF
    Full visible range covering InP/ZnS core-shell nanocrystals with high photometric performance have been prepared. Making use of these nanocrystals, we demonstrate a white quantum dot LED with a high color rendering index of 91. © 2012 IEEE

    Highly flexible, full-color, top-emitting quantum dot light-emitting diode tapes

    Get PDF
    We report flexible tapes of high-performance, top-emitting, quantum dot based, light-emitting diodes (QLEDs) with multicolor emission, actively working even when flexed. The resulting QLED tapes reach a high peak luminance level of 19,265 cd/m2. © 2013 IEEE

    An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays

    Get PDF
    We report phosphorescent organic light-emitting diodes with a substantially improved light outcoupling efficiency and a wider angular distribution through applying a layer of zinc oxide periodic nanopillar arrays by pattern replication in non-wetting templates technique. The devices exhibited the peak emission intensity at an emission angle of 40° compared to 0° for reference device using bare ITO-glass. The best device showed a peak luminance efficiency of 95.5 ± 1.5 cd/A at 0° emission (external quantum efficiency - EQE of 38.5 ± 0.1%, power efficiency of 127 ± 1 lm/W), compared to that of the reference device, which has a peak luminance efficiency of 68.0 ± 1.4 cd/A (EQE of 22.0 ± 0.1%, power efficiency of 72 ± 1 lm/W). © 2013 American Institute of Physics

    Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes

    Get PDF
    High-quality InP/ZnS core-shell nanocrystals with luminescence tunable over the entire visible spectrum have been achieved by a facile one-pot solvothermal method. These nanocrystals exhibit high quantum yields (above 60%), wide emission spectrum tunability and excellent photostability. The FWHM can be as narrow as 38 nm, which is close to that of CdSe nanocrystals. Also, making use of these nanocrystals, we further demonstrated a cadmium-free white QD-LED with a high color rendering index of 91. The high-performance of the resulting InP/ZnS NCs coupled with their low intrinsic toxicity may further promote industrial applications of these NC emitters. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    A PN-type quantum barrier for InGaN/GaN light emitting diodes

    Get PDF
    In this work, InGaN/GaN light-emitting diodes (LEDs) with PN-type quantum barriers are comparatively studied both theoretically and experimentally. A strong enhancement in the optical output power is obtained from the proposed device. The improved performance is attributed to the screening of the quantum confined Stark effect (QCSE) in the quantum wells and improved hole transport across the active region. In addition, the enhanced overall radiative recombination rates in the multiple quantum wells and increased effective energy barrier height in the conduction band has substantially suppressed the electron leakage from the active region. Furthermore, the electrical conductivity in the proposed devices is improved. The numerical and experimental results are in excellent agreement and indicate that the PN-type quantum barriers hold great promise for high-performance InGaN/GaN LEDs. © 2013 Optical Society of America

    A hole modulator for InGaN/GaN light-emitting diodes

    Get PDF
    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332meV to ∼294 meV at 80 A/cm2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs. © 2015 AIP Publishing LLC

    Low-cost, large-scale, ordered ZnO nanopillar arrays for light extraction efficiency enhancement in quantum dot light-emitting diodes

    Get PDF
    We report a QLED with enhanced light outcoupling efficiency by applying a layer of periodic ZnO nanopillar arrays. The resulting QLED reaches the record external quantum efficiency (EQE) of 9.34% in green-emitting QLEDs with a similar device structure. © 2014 IEEE

    Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier

    Get PDF
    We study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure. © 2013 Optical Society of America

    Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes

    Get PDF
    Due to the limitation of the hole injection, p-type doping is essential to improve the performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs). In this work, we propose and show a depletion-region Mg-doping method. Here we systematically analyze the effectiveness of different Mg-doping profiles ranging from the electron blocking layer to the active region. Numerical computations show that the Mg-doping decreases the valence band barrier for holes and thus enhances the hole transportation. The proposed depletion-region Mg-doping approach also increases the barrier height for electrons, which leads to a reduced electron overflow, while increasing the hole concentration in the p-GaN layer. Experimentally measured external quantum efficiency indicates that Mg-doping position is vitally important. The doping in or adjacent to the quantum well degrades the LED performance due to Mg diffusion, increasing the corresponding nonradiative recombination, which is well supported by the measured carrier lifetimes. The experimental results are well numerically reproduced by modifying the nonradiative recombination lifetimes, which further validate the effectiveness of our approach. � 2017 Author(s)

    Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p- GaN current-spreading layer

    Get PDF
    This work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced. © 2013 Optical Society of America
    corecore