32 research outputs found

    Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal Anode

    Get PDF
    A gel polymer electrolyte was formed by trapping an optimized Na+/Zn2+ mixed-ion aqueous electrolyte in a polyacrylonitrile nanofiber polymer matrix. This electrolyte was used in a novel aqueous sodium-ion battery (ASIB) system, which was assembled by using a zinc anode and Na4Mn9O18 cathode. The nanorod-like Na4Mn9O18 was synthesized by a hydrothermal soft chemical reaction. The structural and morphological measurement confirmed that the highly crystalline Na4Mn9O18 nanorods are uniformly distributed. Electrochemical tests of Na4Mn9O18//Zn gel polymer battery demonstrated its high cycle stability along with a good rate of performance. The battery delivers an initial discharge capacity of 96 mAh g−1 , and 64 mAh g−1 after 200 cycles at a high cycling rate of 1 C. Our results demonstrate that the Na4Mn9O18//Zn gel polymer battery is a promising and safe high-performance battery

    Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries

    Get PDF
    Rechargeable lithium/sulfur (Li/S) batteries have received quite significant attention over the years because of their high theoretical specific capacity (1672 mAh g1) and energy density (2600 mAh g1) which has led to more efforts for improvement in their electrochemical performance. Herein, the synthesis of a flexible freestanding sulfur/polyacrylonitrile/graphene oxide (S/PAN/GO) as the cathode for Li/S batteries by simple method via vacuum filtration is reported. The S/PAN/GO hybrid binder-free electrode is considered as one of the most promising cathodes for Li/S batteries. Graphene oxide (GO) slice structure provides effective ion conductivity channels and increases structural stability of the ternary system, resulting in excellent electrochemical properties of the freestanding S/PAN/GO cathode. Additionally, graphene oxide (GO) membrane was able to minimize the polysulfides’ dissolution and their shuttle, which was attributed to the electrostatic interactions between the negatively-charged species and the oxygen functional groups on GO. Furthermore, these oxygen-containing functional groups including carboxyl, epoxide and hydroxyl groups provide active sites for coordination with inorganic materials (such as sulfur). It exhibits the initial reversible specific capacity of 1379 mAh g1 at a constant current rate of 0.2 C and maintains 1205 mAh g1 over 100 cycles (~87% retention). In addition, the freestanding S/PAN/GO cathode displays excellent coulombic efficiency (~100%) and rate capability, delivering up to 685 mAh g1 capacity at 2

    Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Get PDF
    A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g1 at 0.1 C and can retain a capacity of 765 mAh g1 after 100 cycles in potential range from 1 V to 3 V

    Preparation and electrochemical properties of pomegranate-shaped Fe₂O₃/C anodes for li-ion batteries

    Full text link
    Due to the severe volume expansion and poor cycle stability, transition metal oxide anode is still not meeting the commercial utilization. We herein demonstrate the synthetic method of core-shell pomegranate-shaped Fe2O3/C nano-composite via one-step hydrothermal process for the first time. The electrochemical performances were measured as anode material for Li-ion batteries. It exhibits excellent cycling performance, which sustains 705 mAh g-1 reversible capacities after 100 cycles at 100 mA g-1. The anodes also showed good rate stability with discharge capacities of 480 mAh g-1 when cycling at a rate of 2000 mA g-1. The excellent Li storage properties can be attributed to the unique core-shell pomegranate structure, which can not only ensure good electrical conductivity for active Fe2O3, but also accommodate huge volume change during cycles as well as facilitate the fast diffusion of Li ion

    Three-Dimensional Hierarchical Porous Structure of PPy/Porous-Graphene to Encapsulate Polysulfides for Lithium/Sulfur Batteries

    No full text
    Herein, we demonstrate the fabrication of a three-dimensional (3D) polypyrrole-coated-porous graphene (PPy/PG) composite through in-situ polymerization of pyrrole monomer on PG surface. The PPy/PG displays a 3D hierarchical porous structure and the resulting PPy/PG hybrid serves as a conductive trap to lithium polysulfides enhancing the electrochemical performances. Owing to the superior conductivity and peculiar structure, a high initial discharge capacity of 1020 mAh g−1 and the reversible capacity of 802 mAh g−1 over 200 cycles are obtained for the S/PPy/PG cathode at 0.1 C, remaining the remarkable cyclic stability. In addition, the S/PPy/PG cathodes demonstrate an excellent rate performance exhibiting 477 mAh g−1 at 2 C

    Synthesis of Core-Shell Carbon Encapsulated Fe2O3 Composite through a Facile Hydrothermal Approach and Their Application as Anode Materials for Sodium-Ion Batteries

    Get PDF
    Carbon encapsulated Fe2O3 nanoparticles (C@Fe2O3) were successfully synthesized via a facile and environmentally friendly hydrothermal method and prototyped in anode materials for sodium ion batteries (SIBs). High-resolution transmission and scanning electronic microscopy observations exhibited the formation of a highly core-shelled C@Fe2O3 composite consisting of carbon layers coated onto uniform Fe2O3 nanoparticles with a median diameter of 46.1 nm. This core-shell structure can repress the aggregation of Fe2O3 nanoparticles, preventing the harsh volume change of the electrode, enhancing the electric conductivity of the active materials, and promoting Na-ion transformation during cycling. The electrochemical performances of the C@Fe2O3 composite, as anodes for SIBs, retained a reversible capacity of 305 mAh g1 after 100 cycles at 50 mA g1 and exhibited an excellent cyclability at various current densities due to the synergistic effect between the carbon layers and Fe2O3. These results suggest that C@Fe2O3 composites present much potential as anode materials for rechargeable SIB

    Synthesis of the ZnO@ZnS Nanorod for Lithium-Ion Batteries

    No full text
    The ZnO@ZnS nanorod is synthesized by solvothermal method as an anode material for lithium ion batteries. ZnS is deposited on ZnO and assembles in nanorod geometry successfully. The nanosized rod structure supports ion diffusion by substantially reducing the ion channel. The close-linking of ZnS and ZnO improves the synergetic effect. ZnS is in the middle of the ZnO core and the external environment, which would greatly relieve the volume change of the ZnO core during the Li+ intercalation/de-intercalation processes; therefore, the ZnO@ZnS nanorod is helpful in maintaining excellent cycle stability. The ZnO@ZnS nanorod shows a high discharge capacity of 513.4 mAh g−1 at a current density of 200 mA g−1 after 100 cycles, while a reversible capacity of 385.6 mAh g−1 is achieved at 1000 mA g−1

    Preparation of ZnO Nanorods/Graphene Composite Anodes for High-Performance Lithium-Ion Batteries

    No full text
    ZnO is a promising anode material for lithium-ion batteries (LIBs); however, its practical application is hindered primarily by its large volume variation upon lithiation. To overcome this drawback, we synthesized ZnO/graphene composites using the combination of a simple hydrothermal reaction and spray drying. These composites consisted of well-dispersed ZnO nanorods anchored to graphene. The folded three-dimensional graphene spheres provided a high conductivity, high surface area, and abundant defects. LIB with an anode composed of our novel ZnO/graphene material demonstrated a high initial discharge capacity of 1583 mAh g−1 at 200 mA g−1

    High Electrochemical Performance of Nanotube Structured ZnS as Anode Material for Lithium–Ion Batteries

    No full text
    By using ZnO nanorods as an ideal sacrificial template, one-dimensional (1-D) ZnS nanotubes with a mean diameter of 10 nm were successfully synthesized by hydrothermal method. The phase composition and microstructure of the ZnS nanotubes were characterized by using XRD (X-ray diffraction), SEM (scanning electron micrograph), and TEM (transmission electronic microscopy) analysis. X-ray photoelectron spectroscopy (XPS) and nitrogen sorption isotherms measurements were also used to study the information on the surface chemical compositions and specific surface area of the sample. The prepared ZnS nanotubes were used as anode materials in lithium-ion batteries. Results show that the ZnS nanotubes deliver an impressive prime discharge capacity as high as 950 mAh/g. The ZnS nanotubes also exhibit an enhanced cyclic performance. Even after 100 charge/discharge cycles, the discharge capacity could still remain at 450 mAh/g. Moreover, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were also carried out to evaluate the ZnS electrodes

    Three-Dimensional S/CeO2/RGO Composites as Cathode Materials for Lithium–Sulfur Batteries

    No full text
    In this paper, the synthesis of the three-dimensional (3D) composite of spherical reduced graphene oxide (RGO) with uniformly distributed CeO2 particles is reported. This synthesis is done via a facile and large-scalable spray-drying process, and the CeO2/RGO materials are hydrothermally compounded with sulfur. The morphology, composition, structure, and electrochemical properties of the 3D S/CeO2/RGO composite are studied using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), Raman spectra and X-ray photoelectron spectroscopy (XPS), etc. The electrochemical performance of the composites as electrodes for lithium–sulfur batteries is evaluated. The S/CeO2/RGO composites deliver a high initial capacity of 1054 mAh g−1, and retain a reversible capacity of 792 mAh g−1 after 200 cycles at 0.1 C. Profiting from the combined effect of CeO2 and RGO, the CeO2/RGO materials effectively inhibit the dissolution of polysulfides, and the coating of spherical RGO improves the structural stability as well as conductivity
    corecore