62 research outputs found

    CheapNET: Improving Light-weight speech enhancement network by projected loss function

    Full text link
    Noise suppression and echo cancellation are critical in speech enhancement and essential for smart devices and real-time communication. Deployed in voice processing front-ends and edge devices, these algorithms must ensure efficient real-time inference with low computational demands. Traditional edge-based noise suppression often uses MSE-based amplitude spectrum mask training, but this approach has limitations. We introduce a novel projection loss function, diverging from MSE, to enhance noise suppression. This method uses projection techniques to isolate key audio components from noise, significantly improving model performance. For echo cancellation, the function enables direct predictions on LAEC pre-processed outputs, substantially enhancing performance. Our noise suppression model achieves near state-of-the-art results with only 3.1M parameters and 0.4GFlops/s computational load. Moreover, our echo cancellation model outperforms replicated industry-leading models, introducing a new perspective in speech enhancement

    Three-Dimensional Reconstruction of Thoracic Structures: Based on Chinese Visible Human

    Get PDF
    We managed to establish three-dimensional digitized visible model of human thoracic structures and to provide morphological data for imaging diagnosis and thoracic and cardiovascular surgery. With Photoshop software, the contour line of lungs and mediastinal structures including heart, aorta and its ramus, azygos vein, superior vena cava, inferior vena cava, thymus, esophagus, diaphragm, phrenic nerve, vagus nerve, sympathetic trunk, thoracic vertebrae, sternum, thoracic duct, and so forth were segmented from the Chinese Visible Human (CVH)-1 data set. The contour data set of segmented thoracic structures was imported to Amira software and 3D thorax models were reconstructed via surface rendering and volume rendering. With Amira software, surface rendering reconstructed model of thoracic organs and its volume rendering reconstructed model were 3D reconstructed and can be displayed together clearly and accurately. It provides a learning tool of interpreting human thoracic anatomy and virtual thoracic and cardiovascular surgery for medical students and junior surgeons

    A Duration-Dependent Interaction Between High-Intensity Light and Unrestricted Vision in the Drive for Myopia Control

    Get PDF
    Purpose: To evaluate the duration-dependent and synergetic impact of high-intensity light (HL) and unrestricted vision (UnV) on lens-induced myopia (LIM) development in chickens. Methods: Myopia was induced in one eye in chicks (10 groups, n = 126) from day 1 posthatching (D1) until day 8 (D8) using –10 diopter (D) lenses. Fellow eyes remained uncovered as controls. Nine groups were exposed daily to 2, 4, or 6 hours of HL (15,000 lux), UnV (removal of –10 D lens), or both (HL + UnV). One group served as the LIM group without any interventions. Ocular axial length (AL), refractive error, and choroidal thickness were measured on D1, D4, and D8. Outcome measures are expressed as interocular difference (IOD = experimental eye – control eye) ± SEM. Results: By D8, LIM increased AL (0.36 ± 0.04 mm), myopic refraction (−9.02 ± 0.37 D), and choroidal thinning (−90.27 ± 16.44 µm) in the LIM group (all, P < 0.001). Compared to the LIM group, exposure to 2, 4, or 6 hours of HL, UnV, or HL + UnV reduced myopic refraction in a duration-dependent manner, with UnV being more effective than HL (P < 0.05). Only 6 hours of HL + UnV (not 2 or 4 hours) prevented LIM and was more effective than UnV (P = 0.004) or HL (P < 0.001) in reducing myopic refraction and more effective than HL (P < 0.001) in reducing axial elongation. Conclusions: Daily exposure to 2, 4, or 6 hours of HL, UnV, or HL + UnV reduced lens-induced myopic refraction in a duration-dependent manner in chickens. Only 6 hours of HL + UnV completely stopped LIM development. The synergetic effect of HL and UnV is dependent on the duration of the interventions

    The global retinoblastoma outcome study : a prospective, cluster-based analysis of 4064 patients from 149 countries

    Get PDF
    DATA SHARING : The study data will become available online once all analyses are complete.BACKGROUND : Retinoblastoma is the most common intraocular cancer worldwide. There is some evidence to suggest that major differences exist in treatment outcomes for children with retinoblastoma from different regions, but these differences have not been assessed on a global scale. We aimed to report 3-year outcomes for children with retinoblastoma globally and to investigate factors associated with survival. METHODS : We did a prospective cluster-based analysis of treatment-naive patients with retinoblastoma who were diagnosed between Jan 1, 2017, and Dec 31, 2017, then treated and followed up for 3 years. Patients were recruited from 260 specialised treatment centres worldwide. Data were obtained from participating centres on primary and additional treatments, duration of follow-up, metastasis, eye globe salvage, and survival outcome. We analysed time to death and time to enucleation with Cox regression models. FINDINGS : The cohort included 4064 children from 149 countries. The median age at diagnosis was 23·2 months (IQR 11·0–36·5). Extraocular tumour spread (cT4 of the cTNMH classification) at diagnosis was reported in five (0·8%) of 636 children from high-income countries, 55 (5·4%) of 1027 children from upper-middle-income countries, 342 (19·7%) of 1738 children from lower-middle-income countries, and 196 (42·9%) of 457 children from low-income countries. Enucleation surgery was available for all children and intravenous chemotherapy was available for 4014 (98·8%) of 4064 children. The 3-year survival rate was 99·5% (95% CI 98·8–100·0) for children from high-income countries, 91·2% (89·5–93·0) for children from upper-middle-income countries, 80·3% (78·3–82·3) for children from lower-middle-income countries, and 57·3% (52·1-63·0) for children from low-income countries. On analysis, independent factors for worse survival were residence in low-income countries compared to high-income countries (hazard ratio 16·67; 95% CI 4·76–50·00), cT4 advanced tumour compared to cT1 (8·98; 4·44–18·18), and older age at diagnosis in children up to 3 years (1·38 per year; 1·23–1·56). For children aged 3–7 years, the mortality risk decreased slightly (p=0·0104 for the change in slope). INTERPRETATION : This study, estimated to include approximately half of all new retinoblastoma cases worldwide in 2017, shows profound inequity in survival of children depending on the national income level of their country of residence. In high-income countries, death from retinoblastoma is rare, whereas in low-income countries estimated 3-year survival is just over 50%. Although essential treatments are available in nearly all countries, early diagnosis and treatment in low-income countries are key to improving survival outcomes.The Queen Elizabeth Diamond Jubilee Trust and the Wellcome Trust.https://www.thelancet.com/journals/langlo/homeam2023Paediatrics and Child Healt

    Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh

    No full text
    For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods

    A Method of Curve Reconstruction Based on Point Cloud Clustering and PCA

    No full text
    In many application fields (closed curve noise data reconstruction, time series data fitting, image edge smoothing, skeleton extraction, etc.), curve reconstruction based on noise data has always been a popular but challenging problem. In a single domain, there are many methods for curve reconstruction of noise data, but a method suitable for multi-domain curve reconstruction has received much less attention in the literature. More importantly, the existing methods have shortcomings in time consumption when dealing with large data and high-density point cloud curve reconstruction. For this reason, we hope to propose a curve fitting algorithm suitable for many fields and low time consumption. In this paper, a curve reconstruction method based on clustering and point cloud principal component analysis is proposed. Firstly, the point cloud is clustered by the K++ means algorithm. Secondly, a denoising method based on point cloud principal component analysis is proposed to obtain the interpolation nodes of curve subdivision. Finally, the fitting curve is obtained by the parametric curve subdivision method. Comparative experiments show that our method is superior to the classical fitting method in terms of time consumption and effect. In addition, our method is not constrained by the shape of the point cloud, and can play a role in time series data, image thinning and edge smoothing

    Fractal Behavior of a Ternary 4-Point Rational Interpolation Subdivision Scheme

    No full text
    In this paper, a ternary 4-point rational interpolation subdivision scheme is presented, and the necessary and sufficient conditions of the continuity are analyzed. The generalization incorporates existing schemes as special cases: Hassan&#8315;Ivrissimtzis&#8217;s scheme, Siddiqi&#8315;Rehan&#8217;s scheme, and Siddiqi&#8315;Ahmad&#8217;s scheme. Furthermore, the fractal behavior of the scheme is investigated and analyzed, and the range of the parameter of the fractal curve is the neighborhood of the singular point of the rational scheme. When the fractal curve and surface are reconstructed, it is convenient for the selection of parameter values
    corecore