1,515 research outputs found

    Indenture as a Commitment Device in Self-Enforced Contracts: An Experimental Test

    Get PDF
    How can a principal (an agent) ensure that an agent (a principal) will work (pay up), if payment (work) precedes work (payment)? When a banknote is torn in two, each part is by itself worthless. A principal can pre-commit to payment-on-delivery, by tearing a banknote and giving the agent the first half as "prepayment"; the agent receives the completing half upon delivery of the service. This contract design is known as "indenture". It is selfenforcing and incentive-compatible. This paper experimentally tests the efficacy of the "indenture game" and its implications for cooperation in one-shot environments. We find that cooperation rates are high and stable over time. Its efficacy is moderated by expected losses due to the existence of uncooperative types.Cooperation, Experiment, Contracts, Indenture, Reciprocity

    Indenture as a Self-Enforced Contract Device: An Experimental Test

    Get PDF
    We experimentally test the efficacy of indenture as a self-enforced contract device. In an indenture game, the principal signals the intention of payment-on-delivery, by tearing a banknote and giving the agent half of it as "prepayment"; the agent receives the completing half after delivering the service. By forward induction, cooperation is incentive-compatibly self-enforcing. The indenture performs very well, inducing a significantly higher level of cooperation than that in a three-stage centipede game, which we use to benchmark the natural rate of cooperation. The difference between cooperation rates in both games increases over time.Cooperation, experiment, contracts, indenture, reciprocity

    Compiler Optimization Effects on Register Collisions

    Get PDF
    We often want a compiler to generate executable code that runs as fast as possible. One consideration toward this goal is to keep values in fast registers to limit the number of slower memory accesses that occur. When there are not enough physical registers available for use, values are ``spilled\u27\u27 to the runtime stack. The need for spills is discovered during register allocation wherein values in use are mapped to physical registers. One factor in the efficacy of register allocation is the number of values in use at one time (register collisions). Register collision is affected by compiler optimizations that take place before register allocation. Though the main purpose of compiler optimizations is to make the overall code better and faster, some optimizations can actually increase register collisions. This may force the register allocation process to spill. This thesis studies the effects of different compiler optimizations on register collisions

    The Economics of Solidarity: A Conceptual Framework

    Get PDF
    For many people "solidarity" has become a meaningless word used in slogans - too often used without leading to any economic consequences. We show in this paper conditions under which solidarity can be a powerful instrument. In a solidary action, an individual in a group contributes to a series of actions that aims for a reallocation of scarce resources. The willingness to contribute is mainly influenced by the efficiency of the objective of the solidary action, and is enhanced by feelings of mutual exchange (solidarity) within a group. --solidarity,altruism,dynamic,mutual

    The Becklin-Neugebauer Object as a Runaway B Star, Ejected 4000 years ago from the theta^1C system

    Full text link
    We attempt to explain the properties of the Becklin-Neugebauer (BN) object as a runaway B star, as originally proposed by Plambeck et al. (1995). This is one of the best-studied bright infrared sources, located in the Orion Nebula Cluster -- an important testing ground for massive star formation theories. From radio observations of BN's proper motion, we trace its trajectory back to Trapezium star theta^1C, the most massive (45 Msun) in the cluster and a relatively tight (17 AU) visual binary with a B star secondary. This origin would be the most recent known runaway B star ejection event, occurring only \~4000 yr ago and providing a unique test of models of ejection from multiple systems of massive stars. Although highly obscured, we can constrain BN's mass (~7 Msun) from both its bolometric luminosity and the recoil of theta^1C. Interaction of a runaway B star with dense ambient gas should produce a compact wind bow shock. We suggest that X-ray emission from this shocked gas may have been seen by Chandra: the offset from the radio position is ~300 AU in the direction of BN's motion. Given this model, we constrain the ambient density, wind mass-loss rate and wind velocity. BN made closest approach to the massive protostar, source ``I'', 500 yr ago. This may have triggered enhanced accretion and thus outflow, consistent with previous interpretations of the outflow being a recent (~10^3 yr) "explosive" event.Comment: 6 pages, accepted to ApJ Letter

    A Census of Outflow to Magnetic Field Orientations in Nearby Molecular Clouds

    Get PDF
    We define a sample of 200 protostellar outflows showing blue and redshifted CO emission in the nearby molecular clouds Ophiuchus, Taurus, Perseus and Orion to investigate the correlation between outflow orientations and local, but relatively large-scale, magnetic field directions traced by Planck 353 GHz dust polarization. At high significance (p~1e-4), we exclude a random distribution of relative orientations and find that there is a preference for alignment of projected plane of sky outflow axes with magnetic field directions. The distribution of relative position angles peaks at ~30deg and exhibits a broad dispersion of ~50deg. These results indicate that magnetic fields have dynamical influence in regulating the launching and/or propagation directions of outflows. However, the significant dispersion around perfect alignment orientation implies that there are large measurement uncertainties and/or a high degree of intrinsic variation caused by other physical processes, such as turbulence or strong stellar dynamical interactions. Outflow to magnetic field alignment is expected to lead to a correlation in the directions of nearby outflow pairs, depending on the degree of order of the field. Analyzing this effect we find limited correlation, except on relatively small scales < 0.5 pc. Furthermore, we train a convolutional neural network to infer the inclination angle of outflows with respect to the line of sight and apply it to our outflow sample to estimate their full 3D orientations. We find that the angles between outflow pairs in 3D space also show evidence of small-scale alignment.Comment: ApJ Accepte

    IN-SYNC. V. Stellar kinematics and dynamics in the Orion A Molecular Cloud

    Full text link
    The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of ∌2700\sim2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (vrv_r). The young stellar population remains kinematically associated with the molecular gas, following a ∌10 km s−1\sim10\:{\rm{km\:s}}^{-1} gradient along filament. However, near the center of the region, the vrv_r distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of co-located stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion σv\sigma_v varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for on-going expansion, from a vrv_r--extinction correlation. In the southern filament, σv\sigma_v is ∌2\sim2--33 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar sub-populations, detached from the gas. On the contrary, σv\sigma_v decreases towards L1641S, where the population is again in agreement with a virial state.Comment: 14 pages, 13 figures, ApJ accepte
    • 

    corecore