44 research outputs found

    Magnetic anisotropy in hole-doped superconducting Ba 0.67K 0.33Fe 2As2 probed by polarized inelastic neutron scattering

    Get PDF
    We use polarized inelastic neutron scattering (INS) to study spin excitations of optimally hole-doped superconductor Ba0.67_{0.67}K0.33_{0.33}Fe2_2As2_{2} (Tc=38T_c=38 K). In the normal state, the imaginary part of the dynamic susceptibility, χ′′(Q,ω)\chi^{\prime\prime}(Q,\omega), shows magnetic anisotropy for energies below ∼\sim7 meV with c-axis polarized spin excitations larger than that of the in-plane component. Upon entering into the superconducting state, previous unpolarized INS experiments have shown that spin gaps at ∼\sim5 and 0.75 meV open at wave vectors Q=(0.5,0.5,0)Q=(0.5,0.5,0) and (0.5,0.5,1)(0.5,0.5,1), respectively, with a broad neutron spin resonance at Er=15E_r=15 meV. Our neutron polarization analysis reveals that the large difference in spin gaps is purely due to different spin gaps in the c-axis and in-plane polarized spin excitations, resulting resonance with different energy widths for the c-axis and in-plane spin excitations. The observation of spin anisotropy in both opitmally electron and hole-doped BaFe2_2As2_2 is due to their proximity to the AF ordered BaFe2_2As2_2 where spin anisotropy exists below TNT_N.Comment: 5 pages, 4 figure

    Doping influence of spin dynamics and magnetoelectric effect in hexagonal Y0.7_{0.7}Lu0.3_{0.3}MnO3_{3}

    Get PDF
    We use inelastic neutron scattering to study spin waves and their correlation with the magnetoelectric effect in Y0.7_{0.7}Lu0.3_{0.3}MnO3_3. In the undoped YMnO3_3 and LuMnO3_3, the Mn trimerization distortion has been suggested to play a key role in determining the magnetic structure and the magnetoelectric effect. In Y0.7_{0.7}Lu0.3_{0.3}MnO3_3, we find a much smaller in-plane (hexagonal abab-plane) single ion anisotropy gap that coincides with a weaker in-plane dielectric anomaly at TNT_N. Since both the smaller in-plane anisotropy gap and the weaker in-plane dielectric anomaly are coupled to a weaker Mn trimerization distortion in Y0.7_{0.7}Lu0.3_{0.3}MnO3_3 comparing to YMnO3_3 and LuMnO3_3, we conclude that the Mn trimerization is responsible for the magnetoelectric effect and multiferroic phenomenon in Y1−y_{1-y}Luy_{y}MnO3_{3}.Comment: 5 pages, 5 figure

    Electron doping evolution of the magnetic excitations in NaFe1−x_{1-x}Cox_xAs

    Get PDF
    We use time-of-flight (ToF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe1−x_{1-x}Cox_xAs with x=0,0.0175,0.0215,0.05,x=0, 0.0175, 0.0215, 0.05, and 0.110.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E≤80E\le 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E>80E> 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility χ′′(ω)\chi^{\prime\prime}(\omega) of NaFe1−x_{1-x}Cox_xAs reveals a total fluctuating moment of 3.6 μB2\mu_B^2/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Co-overdoped nonsuperconducting NaFe0.89_{0.89}Co0.11_{0.11}As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe2−x_{2-x}Nix_xAs2_2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.Comment: 14 pages, 16 figure

    Electron doping evolution of the neutron spin resonance in NaFe1−x_{1-x}Cox_{x}As

    Get PDF
    Neutron spin resonance, a collective magnetic excitation coupled to superconductivity, is one of the most prominent features shared by a broad family of unconventional superconductors including copper oxides, iron pnictides, and heavy fermions. In this work, we study the doping evolution of the resonances in NaFe1−x_{1-x}Cox_xAs covering the entire superconducting dome. For the underdoped compositions, two resonance modes coexist. As doping increases, the low-energy resonance gradually loses its spectral weight to the high-energy one but remains at the same energy. By contrast, in the overdoped regime we only find one single resonance, which acquires a broader width in both energy and momentum, but retains approximately the same peak position even when TcT_c drops by nearly a half compared to optimal doping. These results suggest that the energy of the resonance in electron overdoped NaFe1−x_{1-x}Cox_xAs is neither simply proportional to TcT_c nor the superconducting gap, but is controlled by the multi-orbital character of the system and doped impurity scattering effect.Comment: accepted by PR

    Superconductivity and electronic fluctuations in Ba1−xKxFe2As2 studied by Raman scattering

    Get PDF
    Using polarization-resolved electronic Raman scattering we study underdoped, optimally doped, and overdoped Ba1−xKxFe2As2 samples in the normal and superconducting states. We show that low-energy nematic fluctuations are universal for all studied doping ranges. In the superconducting state, we observe two distinct superconducting pair-breaking peaks corresponding to one large and one small superconducting gap. In addition, we detect a collective mode below the superconducting transition in the B2g channel and determine the evolution of its binding energy with doping. Possible scenarios are proposed to explain the origin of the in-gap collective mode. In the superconducting state of the underdoped regime, we detect a reentrance transition below which the spectral background changes and the collective mode vanishes
    corecore