934 research outputs found

    On The Pomeron at Large 't Hooft Coupling

    Full text link
    We begin the process of unitarizing the Pomeron at large 't Hooft coupling. We do so first in the conformal regime, which applies to good accuracy to a number of real and toy problems in QCD. We rewrite the conformal Pomeron in the JJ-plane and transverse position space, and then work out the eikonal approximation to multiple Pomeron exchange. This is done in the context of a more general treatment of the complex JJ-plane and the geometric consequences of conformal invariance. The methods required are direct generalizations of our previous work on single Pomeron exchange and on multiple graviton exchange in AdS space, and should form a starting point for other investigations. We consider unitarity and saturation in the conformal regime, noting elastic and absorptive effects, and exploring where different processes dominate. Our methods extend to confining theories and we briefly consider the Pomeron kernel in this context. Though there is important model dependence that requires detailed consideration, the eikonal approximation indicates that the Froissart bound is generically both satisfied and saturated.Comment: 63 pages, 7 figures; published version: references updated and several typos correcte

    Atom gratings produced by large angle atom beam splitters

    Get PDF
    An asymptotic theory of atom scattering by large amplitude periodic potentials is developed in the Raman-Nath approximation. The atom grating profile arising after scattering is evaluated in the Fresnel zone for triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It is shown that, owing to the scattering in these potentials, two \QTR{em}{groups} of momentum states are produced rather than two distinct momentum components. The corresponding spatial density profile is calculated and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure

    The Pomeron and Gauge/String Duality

    Full text link
    The traditional description of high-energy small-angle scattering in QCD has two components -- a soft Pomeron Regge pole for the tensor glueball, and a hard BFKL Pomeron in leading order at weak coupling. On the basis of gauge/string duality, we present a coherent treatment of the Pomeron. In large-N QCD-like theories, we use curved-space string-theory to describe simultaneously both the BFKL regime and the classic Regge regime. The problem reduces to finding the spectrum of a single j-plane Schrodinger operator. For ultraviolet-conformal theories, the spectrum exhibits a set of Regge trajectories at positive t, and a leading j-plane cut for negative t, the cross-over point being model-dependent. For theories with logarithmically-running couplings, one instead finds a discrete spectrum of poles at all t, where the Regge trajectories at positive t continuously become a set of slowly-varying and closely-spaced poles at negative t. Our results agree with expectations for the BFKL Pomeron at negative t, and with the expected glueball spectrum at positive t, but provide a framework in which they are unified. Effects beyond the single Pomeron exchange are briefly discussed.Comment: 68 pages, uses JHEP3.cls, utphys.bst; references added, typos corrected, and clarifying remarks adde

    Electromagnetic properties of graphene junctions

    Full text link
    A resonant chiral tunneling (CT) across a graphene junction (GJ) induced by an external electromagnetic field (EF) is studied. Modulation of the electron and hole wavefunction phases φ\varphi by the external EF during the CT processes strongly impacts the CT directional diagram. Therefore the a.c. transport characteristics of GJs depend on the EF polarization and frequency considerably. The GJ shows great promises for various nanoelectronic applications working in the THz diapason.Comment: 4 pages 3 figure

    The role of ZntA in Klebsiella pneumoniae zinc homeostasis

    Get PDF
    Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that is a leading cause of healthcare-associated infections, including pneumonia, urinary tract infections, and sepsis. Essential to the colonization and infection by K. pneumoniae is the acquisition of nutrients, such as the transition metal ion zinc. Zinc has crucial structural and catalytic roles in the proteome of all organisms. Nevertheless, in excess, it has the potential to mediate significant toxicity by dysregulating the homeostasis of other transition elements, disrupting enzymatic processes, and perturbing metalloprotein cofactor acquisition. Here, we sought to elucidate the zinc detoxification mechanisms of K. pneumoniae, which remain poorly defined. Using the representative K. pneumoniae AJ218 strain, we showed that the P-type ATPase, ZntA, which is upregulated in response to cellular zinc stress, was the primary zinc efflux pathway. Deletion of zntA rendered K. pneumoniae AJ218 highly susceptible to exogenous zinc stress and manifested as an impaired growth phenotype and increased cellular accumulation of the metal. Loss of zntA also increased sensitivity to cadmium stress, indicating a role for this efflux pathway in cadmium resistance. Disruption of zinc homeostasis in the K. pneumoniae AJ218 ΔzntA strain also impacted manganese and iron homeostasis and was associated with increased production of biofilm. Collectively, this work showed the critical role of ZntA in K. pneumoniae zinc tolerance and provided a foundation for further studies on zinc homeostasis and the future development of novel antimicrobials to target this pathway. IMPORTANCE: Klebsiella pneumoniae is a leading cause of healthcare-associated infections, including pneumonia, urinary tract infections, and sepsis. Treatment of K. pneumoniae infections is becoming increasingly challenging due to high levels of antibiotic resistance and the rising prevalence of carbapenem-resistant, extended-spectrum β-lactamases producing strains. Zinc is essential to the colonization and infection by many bacterial pathogens but toxic in excess. This work described the first dissection of the pathways associated with resisting extracellular zinc stress in K. pneumoniae. This study revealed that the P-type ATPase ZntA was highly upregulated in response to exogenous zinc stress and played a major role in maintaining bacterial metal homeostasis. Knowledge of how this major bacterial pathogen resists zinc stress provided a foundation for antimicrobial development studies to target and abrogate their essential function.Eve A. Maunders, Katherine Ganio, Andrew J. Hayes, Stephanie L. Neville, Mark R. Davies, Richard A. Strugnell, Christopher A. McDevitt, Aimee Ta

    Associations of leisure-time physical activity and television viewing with life expectancy cancer-free at age 50: The ARIC study

    Get PDF
    Background: Physical activity has been associated with longer chronic disease-free life expectancy, but specific cancer types have not been investigated. We examined whether leisure-time moderate- to-vigorous physical activity (LTPA) and television (TV) viewing were associated with life expectancy cancer-free. Methods: We included 14,508 participants without a cancer history from the Atherosclerosis Risk in Communities (ARIC) study. We used multistate survival models to separately examine associations of LTPA (no LTPA, <median, ≥median) and TV viewing (seldom/never, sometimes, often/very often) with life expectancy cancer-free at age 50 from invasive colorectal, lung, prostate, and postmenopausal breast cancer. Models were adjusted for age, gender, race, ARIC center, education, smoking, and alcohol intake. Results: Compared with no LTPA, participants who engaged in LTPA ≥median had a greater life expectancy cancer-free from colorectal [men-2.2 years (95% confidence interval (CI), 1.7-2.7), women-2.3 years (95% CI, 1.7-2.8)], lung [men-2.1 years (95% CI, 1.5-2.6), women-2.1 years (95% CI, 1.6-2.7)], prostate [1.5 years (95% CI, 0.8-2.2)], and postmenopausal breast cancer [2.4 years (95% CI, 1.4-3.3)]. Compared with watching TV often/very often, participants who seldom/never watched TV had a greater colorectal, lung, and postmenopausal breast cancer-free life expectancy of ∼1 year. Conclusions: Participating in LTPA was associated with longer life expectancy cancer-free from colorectal, lung, prostate, and postmenopausal breast cancer. Viewing less TV was associated with more years lived cancer-free from colorectal, lung, and postmenopausal breast cancer. Impact: Increasing physical activity and reducing TV viewing may extend the number of years lived cancer-free

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore