7 research outputs found

    Particulate matter air pollution and national and county life expectancy loss in the USA: a spatiotemporal analysis

    Get PDF
    Background Exposure to fine particulate matter pollution (PM2.5) is hazardous to health. Our aim was to directly estimate the health and longevity impacts of current PM2.5 concentrations, and the benefits of reductions from 1999 to 2015, nationally and at county level, for the entire contemporary population of the contiguous United States. Methods and findings We used vital registration and population data with information on sex, age, cause of death and county of residence. We used four Bayesian spatio-temporal models, with different adjustments for other determinants of mortality, to directly estimate mortality and life expectancy loss due to current PM2.5 pollution, and the benefits of reductions since 1999, nationally and by county. The covariates included in the adjusted models were per capita income; percentage of population whose family income is below the poverty threshold, who are of Black or African American race, who have graduated from high-school, who live in urban areas, and who are unemployed; cumulative smoking; and mean temperature and relative humidity. In the main model, which adjusted for these covariates and for unobserved county characteristics through the use of county random intercepts, PM2.5 pollution in excess of the lowest observed concentration (2.8 µg/m3) was responsible for an estimated 15,612 deaths (95% credible interval 13,248-17,945) in females and in 14,757 deaths (12,617-16,919) for males. These deaths would lower national life expectancy by an estimated 0.15 years (0.13-0.17) for women and 0.13 years (0.11-0.15) for men. The life expectancy loss due to PM2.5 was largest around Los Angeles and in some southern states, such as Arkansas, Oklahoma or Alabama. At any PM2.5 concentration, life expectancy loss was, on average, larger in counties with lower income than in wealthier counties. Reductions in PM2.5 since 1999 have lowered mortality in all but 14 counties where PM2.5 increased slightly. The main limitation of our study, similar to other observational studies, is that it is not guaranteed for the observed associations to be causal. We did not have annual county-level data on other important determinants of mortality, such as healthcare access and quality and diet, but these factors were adjusted for with use of county random intercepts. Conclusions According to our estimates, recent reductions in particulate matter pollution in the USA have resulted in public health benefits. Nonetheless, we estimate that current concentrations are associated with mortality impacts and loss of life expectancy, with larger impacts in counties with lower income and higher poverty rate

    Anomalously warm temperatures are associated with increased injury deaths

    Get PDF
    Temperatures which deviate from long-term local norm affect human health, and are projected to become more frequent as the global climate changes.1 There is limited data on how such anomalies affect deaths from injuries. Here, we used data on mortality and temperature over 38 years (1980-2017) in the contiguous USA and formulated a Bayesian spatio-temporal model to quantify how anomalous temperatures, defined as deviations of monthly temperature from the local average monthly temperature over the entire analysis period, affect deaths from unintentional (transport, falls and drownings) and intentional (assault and suicide) injuries, by age group and sex. We found that a 1.5°C anomalously warm year, as envisioned under the Paris Climate Agreement,2 would be associated with an estimated 1,601 (95% credible interval 1,430-37 1,776) additional injury deaths. 84% of these additional deaths would occur in males, mostly in adolescent to middle ages. These deaths would comprise of increases in deaths 39 from drownings, transport, assault and suicide, offset partly by a decline in deaths from falls in older ages. The findings demonstrate the need for targeted interventions against injuries during periods of anomalously high temperatures, especially as these episodes are likely to increase with global climate change

    The Mantle Section of Neoproterozoic Ophiolites from the Pan-African Belt, Eastern Desert, Egypt: Tectonomagmatic Evolution, Metamorphism, and Mineralization

    No full text
    The Eastern Desert (ED) Neoproterozoic ophiolites are tectonically important elements of the Arabian–Nubian Shield. Although affected by various degrees of dismemberment, metamorphism, and alteration, almost all of the diagnostic Penrose-type ophiolite components can be found, namely, lower units of serpentinized peridotite tectonite and cumulate ultramafics and upper units of layered and isotropic gabbros, plagiogranites, sheeted dykes and pillow lavas. The contacts between the lower unit (mantle section) and the upper unit (crustal section) were originally magmatic, but in all cases are now disrupted by tectonism. The mantle sections of the ED ophiolites are exposed as folded thrust sheets bearing important and distinctive lithologies of serpentinized peridotites of harzburgite and dunite protoliths with occasional podiform chromitites. The ED ophiolites show a spatial and temporal association with suture zones that indicate fossil subduction zone locations. Multiple episodes of regional metamorphism mostly reached greenschist facies with less common amphibolite facies localities. CO₂-metasomatism resulted in the development of talc–carbonate, listvenite, magnesite, and other carbonate-bearing meta-ultramafic rocks. Geochemical data from the ED serpentinites, despite some confounding effects of hydration and alteration, resemble modern oceanic peridotites. The ED serpentinites show high LOI (≤20 wt%); Mg# mostly higher than 0.89; enrichment of Ni, Cr, and Co; depletion of Al₂O₃ and CaO; and nearly flat, depleted, and unfractionated chondrite-normalized REE patterns. The modal abundance of clinopyroxene is very low if it is present at all. Chromian spinel survived metamorphism and is widely used as the most reliable petrogenetic and geotectonic indicator in the ED ophiolite mantle sections. The high-Cr# (mostly ~0.7) and low-TiO₂ (mostly ≤ 0.1 wt%) characters of chromian spinel indicate a high degree of partial melt extraction (≥30%), which is commonly associated with fore-arc settings and equilibration with boninite-like or high-Mg tholeiite melts. Based on the general petrological characteristics, the ED ophiolitic chromitites are largely similar to Phanerozoic examples that have been attributed to melt–peridotite interaction and subsequent melt mixing in fore-arc settings. The comparison between the ED Neoproterozoic mantle peridotites and Phanerozoic equivalents indicates considerable similarity in tectonomagmatic processes and does not support any major changes in the geothermal regime of subduction zones on Earth since the Neoproterozoic era. The mantle sections of ED ophiolites are worthy targets for mining and exploration, hosting a variety of ores (chromite, gold, and iron/nickel laterites) and industrial minerals (talc, asbestos, and serpentine)

    Application of Extraction Methods for the Determin of Small Amounts of Metals

    No full text
    corecore