1 Anomalously warm temperatures are associated with increased injury deaths:
2 Supplementary Information
3 Robbie M Par ks ${ }^{1,2}$, James E Bennett ${ }^{1,2}$, Helen Tamura-Wicks ${ }^{1,2}$, Vasilis Kontis ${ }^{1,2}$, Ralf Toumi ${ }^{3}$,
4 Goodarz Danaei ${ }^{4}$, Majid Ezzati ${ }^{1,2,5^{*}}$
$6 \quad{ }^{1}$ MRC-PHE Centre for Environment and Health, Imperial College London, London, United 7 Kingdom

21 Supplementary Table 1. Injury groups used in the analysis with ICD-9 and ICD-10 codes.

Injury type		ICD-9	ICD-10
Unintentional	Transport	E800-E849	V01-V99
	Falls	E880-E888	W00-W19
	Drownings	E910	W65-W74
	Other unintentional (not analysed)	E850-E869, E890-E909, E911-E928	W20-W64, W75-X59
Intentional	Suicide	E950-E959	X60-X84
	Assault	E960-E969	X85-Y09
Intention undetermined (not analysed)	E980-E989	Y10-Y34	
Legal intervention and operations of war (not analysed)	E970-E979, E990-E999	Y35-Y36	
Complications of medical and surgical care (not analysed)	E870-E879, E930-E949	Y40-Y84	
Sequelae of external causes (not analysed)	Y85-Y89		

22 Supplementary Table 2. Number of deaths and population over the study period (198023 2017) for injuries included in the analysis.

Sex	$\begin{aligned} & \text { Age } \\ & \text { group } \\ & \text { (years) } \end{aligned}$	Transport	Falls	Drowning	Suicide	Assault	Population (millions)
Male	0-4	19,263	1,828	14,110	0	14,137	379.6
	5-14	42,669	1,324	11,158	7,748	8,974	759.5
	15-24	316,862	8,801	26,335	147,423	180,145	801.9
	25-24	243,115	12,592	18,433	183,075	168,401	806.3
	35-34	175,783	17,389	13,617	175,251	98,664	748.8
	45-44	144,482	26,760	10,941	162,956	56,557	646.6
	55-54	110,084	36,343	8,420	126,006	29,811	508.0
	65-74	78,582	51,674	6,027	91,763	14,365	342.9
	75-84	62,262	95,526	4,136	70,682	6,531	176.4
	85+	23,756	103,976	1,596	25,633	1,861	49.9
Female	0-4	15,366	1,040	7,499	0	11,357	362.7
	5-14	25,912	489	3,517	2,971	5,894	725.1
	15-24	114,825	1,372	2,773	29,346	33,585	768.3
	25-24	75,607	2,096	2,756	43,114	39,843	797.5
	35-34	64,139	3,996	2,757	53,786	29,759	759.6
	45-44	55,040	8,301	2,737	56,141	17,900	672.5
	55-54	47,243	15,337	2,443	40,004	10,302	555.5
	65-74	47,478	34,426	2,213	22,261	7,572	417.0
	75-84	46,699	96,857	2,270	12,705	6,086	266.9
	85+	18,243	176,591	1,171	4,573	2,620	112.0

24

Supplementary Table 3. Pearson's correlation coefficients between monthly anomalies generated from daily mean temperature and daily maximum and minimum temperatures. Each correlation coefficient was calculated in each state for each month for 1980-2017, then averaged over all states for each month.

Month	Mean daily temperature and maximum daily temperature	Mean daily temperature and minimum daily temperature
January	0.98	0.98
February	0.98	0.98
March	0.97	0.97
April	0.97	0.96
May	0.96	0.94
June	0.95	0.92
July	0.96	0.94
August	0.93	0.93
September	0.91	0.91
October	0.96	0.93
November	0.97	0.97
December	0.98	

29 Supplementary Table 4. Pearson's correlation coefficients between anomaly of mean daily temperature and measures of extreme anomalous temperature described in Methods. Each correlation coefficient was calculated in each state for each month for 1980-2017, then averaged over all states for each month.

Temperature variables	Anomaly of mean (main analysis)	Anomaly of $90^{\text {th }}$ percentile	Number of days above long-term $90^{\text {th }}$ percentile	Number of 3+ day episodes above long-term $90^{\text {th }}$ percentile
Anomaly of mean (main analysis)	0.79	0.75	0.6	
Anomaly of $90^{\text {th }}$ percentile	0.79	0.89	0.89	0.77
Number of days above long-term $90^{\text {th }}$ percentile	0.75	0.77	0.86	0.86
Number of 3+ day episodes above long-term $90^{\text {th }}$ percentile	0.6			

