3 research outputs found

    Improvement of Transient Stability of Photovoltaic-hydro Microgrids Using Virtual Synchronous Machines

    Get PDF
    Photovoltaic-hydro microgrids can provide reliable clean energy in remote areas that do not have an electric grid. Higher photovoltaic penetration can cause large frequency deviations at a high rate of change of frequency in the system. Virtual synchronous machines have been used to enhance performance of a diesel hybrid minigrid but no studies have been performed to account for dynamics of a hydro system. A method is needed to improve the transient stability of photovoltaic-hydro microgrid systems while allowing high photovoltaic penetration. The objective of this thesis was to study the feasibility of using virtual synchronous machines to improve transient stability of photovoltaic-hydro microgrid systems. A virtual synchronous machine is a short term energy storage device with power electronics and a dispatching algorithm that provides inertia to the grid. Transient analysis of a 25 kWp-39 kW photovoltaic–hydro benchmark system was performed using a MATLAB\Simulink simulation with and without the virtual synchronous machine. The virtual synchronous machine was modeled using directquadrature axis based current control techniques, and software in the loop simulations were performed in Opal-RT real time digital simulator. Large frequency deviations and rate of change of frequency were observed when the virtual synchronous machine was not included. When the virtual synchronous machine was used, frequency deviations and the rate of change of frequency were reduced to within limits. The energy use was minimal and comparable to small lead acid or NiMH batteries. Hence, virtual synchronous machines can improve the transient stability of photovoltaic-hydro systems while allowing high photovoltaic penetration

    Virtual Inertia: Current Trends and Future Directions

    Get PDF
    The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems

    Online Learning Control for Harmonics Reduction Based on Current Controlled Voltage Source Power Inverters

    No full text
    Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components. Shunt active filters (SAF) with current controlled voltage source inverters (CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents. However, CCVSI with traditional controllers have a limited transient and steady state performance. In this paper, we propose an adaptive dynamic programming (ADP) controller with online learning capability to improve transient response and harmonics. The proposed controller works alongside existing proportional integral (PI) controllers to efficiently track the reference currents in the d - q domain. It can generate adaptive control actions to compensate the PI controller. The proposed system was simulated under different nonlinear (three-phase full wave rectifier) load conditions. The performance of the proposed approach was compared with the traditional approach. We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison. The online learning based ADP controller not only reduced average total harmonic distortion by 18.41 %, but also outperformed traditional PI controllers during transients
    corecore