71 research outputs found
Elevation and cholera: an epidemiological spatial analysis of the cholera epidemic in Harare, Zimbabwe, 2008-2009
BACKGROUND: In highly populated African urban areas where access to clean water is a challenge, water source contamination is one of the most cited risk factors in a cholera epidemic. During the rainy season, where there is either no sewage disposal or working sewer system, runoff of rains follows the slopes and gets into the lower parts of towns where shallow wells could easily become contaminated by excretes. In cholera endemic areas, spatial information about topographical elevation could help to guide preventive interventions. This study aims to analyze the association between topographic elevation and the distribution of cholera cases in Harare during the cholera epidemic in 2008 and 2009. METHODS: We developed an ecological study using secondary data. First, we described attack rates by suburb and then calculated rate ratios using whole Harare as reference. We illustrated the average elevation and cholera cases by suburbs using geographical information. Finally, we estimated a generalized linear mixed model (under the assumption of a Poisson distribution) with an Empirical Bayesian approach to model the relation between the risk of cholera and the elevation in meters in Harare. We used a random intercept to allow for spatial correlation of neighboring suburbs. RESULTS: This study identifies a spatial pattern of the distribution of cholera cases in the Harare epidemic, characterized by a lower cholera risk in the highest elevation suburbs of Harare. The generalized linear mixed model showed that for each 100 meters of increase in the topographical elevation, the cholera risk was 30% lower with a rate ratio of 0.70 (95% confidence interval=0.66-0.76). Sensitivity analysis confirmed the risk reduction with an overall estimate of the rate ratio between 20% and 40%. CONCLUSION: This study highlights the importance of considering topographical elevation as a geographical and environmental risk factor in order to plan cholera preventive activities linked with water and sanitation in endemic areas. Furthermore, elevation information, among other risk factors, could help to spatially orientate cholera control interventions during an epidemic
A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces
While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm
- …