19 research outputs found

    Testing Emergent Gravity on Galaxy Cluster Scales

    Get PDF
    Verlinde's theory of Emergent Gravity (EG) describes gravity as an emergent phenomenon rather than a fundamental force. Applying this reasoning in de Sitter space leads to gravity behaving differently on galaxy and galaxy cluster scales; this excess gravity might offer an alternative to dark matter. Here we test these ideas using the data from the Coma cluster and from 58 stacked galaxy clusters. The X-ray surface brightness measurements of the clusters at 0.1<z<1.20.1 < z < 1.2 along with the weak lensing data are used to test the theory. We find that the simultaneous EG fits of the X-ray and weak lensing datasets are significantly worse than those provided by General Relativity (with cold dark matter). For the Coma cluster, the predictions from Emergent Gravity and General Relativity agree in the range of 250 - 700 kpc, while at around 1 Mpc scales, EG total mass predictions are larger by a factor of 2. For the cluster stack the predictions are only in good agreement at around the 1 - 2 Mpc scales, while for r10r \gtrsim 10 Mpc EG is in strong tension with the data. According to the Bayesian information criterion analysis, GR is preferred in all tested datasets; however, we also discuss possible modifications of EG that greatly relax the tension with the data.Comment: 19 pages, 5 figures, 5 tables, accepted for publication on JCA

    Using machine learning to optimise chameleon fifth force experiments

    Full text link
    The chameleon is a theorised scalar field that couples to matter and possess a screening mechanism, which weakens observational constraints from experiments performed in regions of higher matter density. One consequence of this screening mechanism is that the force induced by the field is dependent on the shape of the source mass (a property that distinguishes it from gravity). Therefore an optimal shape must exist for which the chameleon force is maximised. Such a shape would allow experiments to improve their sensitivity by simply changing the shape of the source mass. In this work we use a combination of genetic algorithms and the chameleon solving software SELCIE to find shapes that optimise the force at a single point in an idealised experimental environment. We note that the method we used is easily customised, and so could be used to optimise a more realistic experiment involving particle trajectories or the force acting on an extended body. We find the shapes outputted by the genetic algorithm possess common characteristics, such as a preference for smaller source masses, and that the largest fifth forces are produced by small `umbrella'-like shapes with a thickness such that the source is unscreened but the field reaches its minimum inside the source. This remains the optimal shape even as we change the chameleon potential, and the distance from the source, and across a wide range of chameleon parameters. We find that by optimising the shape in this way the fifth force can be increased by 2.452.45 times when compared to a sphere, centred at the origin, of the same volume and mass.Comment: 28 pages, 17 figures, The SELCIE code is available at: https://github.com/C-Briddon/SELCI

    SELCIE: a tool for investigating the chameleon field of arbitrary sources

    Get PDF
    The chameleon model is a modified gravity theory that introduces an additional scalar field that couples to matter through a conformal coupling. This `chameleon field' possesses a screening mechanism through a nonlinear self-interaction term which allows the field to affect cosmological observables in diffuse environments whilst still being consistent with current local experimental constraints. Due to the self-interaction term the equations of motion of the field are nonlinear and therefore difficult to solve analytically. The analytic solutions that do exist in the literature are either approximate solutions and or only apply to highly symmetric systems. In this work we introduce the software package SELCIE (https://github.com/C-Briddon/SELCIE.git). This package equips the user with tools to construct an arbitrary system of mass distributions and then to calculate the corresponding solution to the chameleon field equation. It accomplishes this by using the finite element method and either the Picard or Newton nonlinear solving methods. We compared the results produced by SELCIE with analytic results from the literature including discrete and continuous density distributions. We found strong (sub-percentage) agreement between the solutions calculated by SELCIE and the analytic solutions

    Using machine learning to optimise chameleon fifth force experiments

    Get PDF
    The chameleon is a theorised scalar field that couples to matter and possess a screening mechanism, which weakens observational constraints from experiments performed in regions of higher matter density. One consequence of this screening mechanism is that the force induced by the field is dependent on the shape of the source mass (a property that distinguishes it from gravity). Therefore an optimal shape must exist for which the chameleon force is maximised. Such a shape would allow experiments to improve their sensitivity by simply changing the shape of the source mass. In this work we use a combination of genetic algorithms and the chameleon solving software SELCIE to find shapes that optimise the force at a single point in an idealised experimental environment. We note that the method we used is easily customised, and so could be used to optimise a more realistic experiment involving particle trajectories or the force acting on an extended body. We find the shapes outputted by the genetic algorithm possess common characteristics, such as a preference for smaller source masses, and that the largest fifth forces are produced by small `umbrella'-like shapes with a thickness such that the source is unscreened but the field reaches its minimum inside the source. This remains the optimal shape even as we change the chameleon potential, and the distance from the source, and across a wide range of chameleon parameters. We find that by optimising the shape in this way the fifth force can be increased by 2.45 times when compared to a sphere, centred at the origin, of the same volume and mass

    Low-Dose Ketamine for Acute Postoperative Pain Treatment

    Get PDF
    Treatment of acute postoperative pain is an essential part of perioperative care and if left untreated could complicate the healing period. Ketamine blocks nociceptive pain and pain arising from inflammation. Therefore, it is potentially beneficial in the postoperative period. After systematic review using “MEDLINE/PubMed (NLM)” database, we analyzed 18 studies published during 2011–2020 and found that 0.5 mg/kg/h ketamine bolus and 0.1–0.25 mg/kg/h ketamine infusion to be the most effective dose to alleviate postoperative acute pain. Ketamine, when compared with a placebo, did not have any impact on patients’ satisfaction with postoperative pain management and overall well-being. Only three studies revealed more frequent adverse reactions to ketamine after surgery suggesting that ketamine did not have any impact on patients’ postoperational rehabilitation. So, it is the option to recommend low-dose ketamine to be part of multimodal analgesia in acute severe postoperative pain treatment. It can be used in both opioid-dependent and opioid-tolerant patients. Ketamine bolus should be ≤0.35 mg/kg and infusion ≤1 mg/kg/h. One should avoid the use of ketamine in pregnant women, people with cardiovascular diseases, acute psychosis, impaired liver function, increased intracranial, and intraocular pressure. Intranasal ketamine may be considered for children during procedures outside of the operation room

    Cosmic topology. Part I. Limits on orientable Euclidean manifolds from circle searches

    Get PDF
    The Einstein field equations of general relativity constrain the local curvature at every point in spacetime, but say nothing about the global topology of the Universe. Cosmic microwave background anisotropies have proven to be the most powerful probe of non-trivial topology since, within Λ\LambdaCDM, these anisotropies have well-characterized statistical properties, the signal is principally from a thin spherical shell centered on the observer (the last scattering surface), and space-based observations nearly cover the full sky. The most generic signature of cosmic topology in the microwave background is pairs of circles with matching temperature and polarization patterns. No such circle pairs have been seen above noise in the WMAP or Planck temperature data, implying that the shortest non-contractible loop around the Universe through our location is longer than 98.5% of the comoving diameter of the last scattering surface. We translate this generic constraint into limits on the parameters that characterize manifolds with each of the nine possible non-trivial orientable Euclidean topologies, and provide a code which computes these constraints. In all but the simplest cases, the shortest non-contractible loop in the space can avoid us, and be shorter than the diameter of the last scattering surface by a factor ranging from 2 to at least 6. This result implies that a broader range of manifolds is observationally allowed than widely appreciated. Probing these manifolds will require more subtle statistical signatures than matched circles, such as off-diagonal correlations of harmonic coefficients.Comment: 22 pages, 7 figures. v3: Corrected Figs. 3, 4, and 5 as published in Erratu

    Cosmic topology. Part II. Eigenmodes, correlation matrices, and detectability of orientable Euclidean manifolds

    Full text link
    If the Universe has non-trivial spatial topology, observables depend on both the parameters of the spatial manifold and the position and orientation of the observer. In infinite Euclidean space, most cosmological observables arise from the amplitudes of Fourier modes of primordial scalar curvature perturbations. Topological boundary conditions replace the full set of Fourier modes with specific linear combinations of selected Fourier modes as the eigenmodes of the scalar Laplacian. We present formulas for eigenmodes in orientable Euclidean manifolds with the topologies E1E_1 - E6E_6, E11E_{11}, E12E_{12}, E16E_{16}, and E18E_{18} that encompass the full range of manifold parameters and observer positions, generalizing previous treatments. Under the assumption that the amplitudes of primordial scalar curvature eigenmodes are independent random variables, for each topology we obtain the correlation matrices of Fourier-mode amplitudes (of scalar fields linearly related to the scalar curvature) and the correlation matrices of spherical-harmonic coefficients of such fields sampled on a sphere, such as the temperature of the cosmic microwave background (CMB). We evaluate the detectability of these correlations given the cosmic variance of the observed CMB sky. We find that topologies where the distance to our nearest clone is less than about 1.2 times the diameter of the last scattering surface of the CMB give a correlation signal that is larger than cosmic variance noise in the CMB. This implies that if cosmic topology is the explanation of large-angle anomalies in the CMB, then the distance to our nearest clone is not much larger than the diameter of the last scattering surface. We argue that the topological information is likely to be better preserved in three-dimensional data, such as will eventually be available from large-scale structure surveys.Comment: 79 pages, 9 figure

    Managing selection of AFF power generation technologies in the internationally evolving carbon-free context

    No full text
    The article presents the analysis fossil fuel power generation market, focusing on management of advanced fossil fuel (AFF) power generation challenges of related technologies especially when tackling climate change impacts, complying with stricter environmental requirements. A wide and dynamic spectrum in scope and scale of factors revealed confirms the necessity for solutions enabling organizations to transform and manage rationally their fossil fuel-based business models towards greater competitiveness in the context of emerging renewable energy reliance. Nevertheless, in this respect the measures in question may require trade-offs, therefore when considering their combination, a diligent multicriteria analysis will inevitably be involved. With pivotal focus on the economic utility and the balanced and sustained strategic development of business, as the result of the research author proposes to apply VIKOR method when deciding on AFF power generation options. Application flexibility of the proposed method allow to evaluate, compare possible alternatives in a comprehensive and complex manner and to mingle MCDA tools if needed

    Chameleon Screening Depends on the Shape and Structure of NFW Halos

    Get PDF
    Chameleon gravity is an example of a model that gives rise to interesting phenomenology on cosmological scales while simultaneously possessing a screening mechanism, allowing it to avoid solar system constraints. Such models result in non-linear field equations, which can be solved analytically only in simple highly symmetric systems. In this work we study the equation of motion of a scalar-tensor theory with chameleon screening using the finite element method. More specifically, we solve the field equation for spherical and triaxial NFW cluster-sized halos. This allows a detailed investigation of the relationship between the NFW concentration and the virial mass parameters and the magnitude of the chameleon acceleration, as measured at the virial radius. In addition, we investigate the effects on the chameleon acceleration due to halo triaxiality. We focus on the parameter space regions that are still allowed by the observational constraints. We find that given our dataset, the largest allowed value for the chameleon-to-NFW acceleration ratio at the virial radius is ∼10-7. This result strongly indicates that the chameleon models that are still allowed by the observational constraints would not lead to any measurable effects on galaxy cluster scales. Nonetheless, we also find that there is a direct relationship between the NFW potential and the chameleon-to-NFW acceleration ratio at the virial radius. Similarly, there is a direct (yet a much more complicated) relationship between the NFW concentration, the virial mass and the acceleration ratios at the virial radius. Finally, we find that triaxiality introduces extra directional effects on the acceleration measurements. These effects in combination could potentially be used in future observational searches for fifth forces
    corecore