9 research outputs found

    Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    Get PDF
    Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.). Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets

    Chalcones Repressed the AURKA and MDR Proteins Involved in Metastasis and Multiple Drug Resistance in Breast Cancer Cell Lines

    No full text
    In the present investigation, trans-chalcone and licochalcone A were tested against MCF-7 and BT-20 breast cancer cell lines for anti-tumor activity. We found that both chalcones down regulated important genes associated to cancer development and inhibited cell migration of metastatic cells (BT-20). Finally, we observed that licochalcone A reduces the MDR-1 protein, while both chalcones suppress the AURKA protein in a dose-dependent manner. In conclusion, we observed the trans-chalcone and licochalcone A affected the cell viability of breast cancer cell lines MCF-7 and BT-20 and presents anti-metastatic and anti-resistance potential, by the repression of AUKA and MDR-1 proteins

    Resumos concluídos - Saúde Coletiva

    No full text
    Resumos concluídos - Saúde Coletiv

    Resumos concluídos - Saúde Coletiva

    No full text
    Resumos concluídos - Saúde Coletiv
    corecore