33 research outputs found

    Mechanistic species distribution modeling reveals a niche shift during invasion

    Get PDF
    Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual populations. Ignoring such effects could substantially underestimate the extent and impact of invasions

    Affinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: Identification of novel peptidic inhibitors.

    Get PDF
    MDM2 and MDMX are oncoproteins that negatively regulate the activity and stability of the tumor suppressor protein p53. The inhibitors of protein-protein interactions (PPIs) of MDM2-p53 and MDMX-p53 represent potential anticancer agents. In this study, a novel approach for identifying MDM2-p53 and MDMX-p53 PPI inhibitor candidates by affinity-based screening using a chemical array has been established. A number of compounds from an in-house compound library, which were immobilized onto a chemical array, were screened for interaction with fluorescence-labeled MDM2 and MDMX proteins. The subsequent fluorescent polarization assay identified several compounds that inhibited MDM2-p53 and MDMX-p53 interactions

    Ab-initio Molecular Dynamics Simulation of Water Clusters

    Get PDF
    Ab-initio molecular dynamics calculation for water monomer, dimer, trimer, and hexamer are performed at 0 K and 4-200 K with all-electron mixed-basis local density approximation. Calculation conditions with small unit cell, 18.3 a.u., and high cutoff energy, 17 Ry, gave more closed structure to those obtained in experiments and in other ab-initio calculations than the conditions with large cell, 28.4 a.u. and low cutoff energy, 7.2 Ry. Much lower cutoff energy, 5.6 Ry, could not represent hydrogen bonds correctly in a hexamer

    Synthesis of Ammonia through Direct Chemical Reactions between an Atmospheric Nitrogen Plasma Jet and a Liquid

    No full text

    Ablation of Iah1, a candidate gene for diet-induced fatty liver, does not affect liver lipid accumulation in mice.

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is a pathological condition caused by excess triglyceride deposition in the liver. The SMXA-5 severe fatty liver mouse model has been established from the SM/J and A/J strains. To explore the genetic factors involved in fatty liver development in SMXA-5 mice, we had previously performed quantitative trait locus (QTL) analysis, using (SM/J×SMXA-5)F2 intercross mice, and identified Fl1sa on chromosome 12 (centromere-53.06 Mb) as a significant QTL for fatty liver. Furthermore, isoamyl acetate-hydrolyzing esterase 1 homolog (Iah1) was selected as the most likely candidate gene for Fl1sa. Iah1 gene expression in fatty liver-resistant A/J-12SM mice was significantly higher than in fatty liver-susceptible A/J mice. These data indicated that the Iah1 gene might be associated with fatty liver development. However, the function of murine Iah1 remains unknown. Therefore, in this study, we created Iah1 knockout (KO) mice with two different backgrounds [C57BL/6N (B6) and A/J-12SM (A12)] to investigate the relationship between Iah1 and liver lipid accumulation. Liver triglyceride accumulation in Iah1-KO mice of B6 or A12 background did not differ from their respective Iah1-wild type mice under a high-fat diet. These results indicated that loss of Iah1 did not contribute to fatty liver. On the other hands, adipose tissue dysfunction causes lipid accumulation in ectopic tissues (liver, skeletal muscle, and pancreas). To investigate the effect of Iah1 deficiency on white adipose tissue, we performed DNA microarray analysis of epididymal fat in Iah1-KO mice of A12 background. This result showed that Iah1 deficiency might decrease adipokines Sfrp4 and Metrnl gene expression in epididymal fat. This study demonstrated that Iah1 deficiency did not cause liver lipid accumulation and that Iah1 was not a suitable candidate gene for Fl1sa
    corecore