24 research outputs found

    Francisella tularensis Uses Cholesterol and Clathrin-Based Endocytic Mechanisms to Invade Hepatocytes

    Get PDF
    Francisella tularensis are highly infectious microbes that cause the disease tularemia. Although much of the bacterial burden is carried in non-phagocytic cells, the strategies these pathogens use to invade these cells remains elusive. To examine these mechanisms we developed two in vitro Francisella-based infection models that recapitulate the non-phagocytic cell infections seen in livers of infected mice. Using these models we found that Francisella novicida exploit clathrin and cholesterol dependent mechanisms to gain entry into hepatocytes. We also found that the clathrin accessory proteins AP-2 and Eps15 co-localized with invading Francisella novicida as well as the Francisella Live Vaccine Strain (LVS) during hepatocyte infections. Interestingly, caveolin, a protein involved in the invasion of Francisella in phagocytic cells, was not required for non-phagocytic cell infections. These results demonstrate a novel endocytic mechanism adopted by Francisella and highlight the divergence in strategies these pathogens utilize between non-phagocytic and phagocytic cell invasion

    CD14 Signaling Restrains Chronic Inflammation through Induction of p38-MAPK/SOCS-Dependent Tolerance

    Get PDF
    Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes

    Changing trends in mastitis

    Get PDF
    <p>Abstract</p> <p>The global dairy industry, the predominant pathogens causing mastitis, our understanding of mastitis pathogens and the host response to intramammary infection are changing rapidly. This paper aims to discuss changes in each of these aspects. Globalisation, energy demands, human population growth and climate change all affect the dairy industry. In many western countries, control programs for contagious mastitis have been in place for decades, resulting in a decrease in occurrence of <it>Streptococcus agalactiae </it>and <it>Staphylococcus aureus </it>mastitis and an increase in the relative impact of <it>Streptococcus uberis </it>and <it>Escherichia coli </it>mastitis. In some countries, <it>Klebsiella </it>spp. or <it>Streptococcus dysgalactiae </it>are appearing as important causes of mastitis. Differences between countries in legislation, veterinary and laboratory services and farmers' management practices affect the distribution and impact of mastitis pathogens. For pathogens that have traditionally been categorised as contagious, strain adaptation to human and bovine hosts has been recognised. For pathogens that are often categorised as environmental, strains causing transient and chronic infections are distinguished. The genetic basis underlying host adaptation and mechanisms of infection is being unravelled. Genomic information on pathogens and their hosts and improved knowledge of the host's innate and acquired immune responses to intramammary infections provide opportunities to expand our understanding of bovine mastitis. These developments will undoubtedly contribute to novel approaches to mastitis diagnostics and control.</p

    Adherence and uptake of Francisella

    No full text

    Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins.

    No full text
    Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways

    Intoxication Mediated by CdtA and CdtC Subunits.

    No full text
    <p>Jurkat, HeLa, or CHO-A745 cells were seeded in clear-bottom 384-well plates, incubated overnight, then challenged with the indicated toxin concentrations. Holotoxin, black circles; CdtAB, red squares; CdtBC, blue triangles. Intoxication was allowed to proceed for 48 h (Jurkat) or 72 h (HeLa and CHO-A745). Cell viability was measured by ATPlite reagent (Perkin Elmer), and normalized to ATPlite signal from unintoxicated controls. Data represent average values from three independent experiments, each performed in triplicate, +/- standard deviation. Lines represent nonlinear curve fit calculated using Prism 5 (GraphPad).</p

    CdtC Mediates Cholesterol Dependency of Ec-CDT.

    No full text
    <p>CHO-A745 cells were seeded at 8 x 10<sup>3</sup> cells/well on 96-well plates and allowed to adhere overnight. The next day, cells were incubated with or without 5 mM MβCD and/or 12.5 μM EGA for 1 h then challenged with 1 μM Ec-CDT or Ec-CdtAB for 16 h. Intoxication was assessed by measuring pH<sub>2</sub>AX by laser scanning cytometry as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143977#pone.0143977.g002" target="_blank">Fig 2B</a>. Data were normalized against pH<sub>2</sub>AX signal induced by Ec-CDT holotoxin (maximum signal) in each experiment. Graphs represent average values and SEM from three independent experiments, each performed in triplicate. All statistical analyses are from the pairwise post-test (Tukey’s) derived from one-way ANOVA. (Prism 5, GraphPad). Symbols above each column reflect comparison to Ec-CDT holotoxin (ns = not significant; * p < 0.001). Additional pairwise comparisons are indicated by brackets.</p

    Ec-CdtC Dictates Resistance to EGA and Alters Intracellular Trafficking of Ec-CdtB.

    No full text
    <p>(A) CHO-A745 cells were intoxicated as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143977#pone.0143977.g001" target="_blank">Fig 1</a> except that all wells were additionally treated with 12.5 μM EGA. (B) CHO-A745 cells were seeded at 8 x 10<sup>3</sup> cells/well on 96-well plates and allowed to adhere overnight. The next day, cells were incubated with 1μM Ec-CDT holotoxin or 1 μM Ec-CdtAB for 4 or 16 h. Phosphorylated H<sub>2</sub>AX (anti-pH<sub>2</sub>AX) was measured by laser scanning cytometry as described in Methods. Signal intensity for pH<sub>2</sub>AX induced by Ec-CDT holotoxin was set at 100% and used to normalize signal from CdtAB for each time point. Graphs represent average values from three independent experiments, each performed at least 3 times. *p value = 0.0121 calculated by unpaired two-tailed t test (Prism 5, GraphPad). (C, D) CHO-A745 cells were seeded at 2 x 10<sup>4</sup> cells/well on 8-well chambered slides and allowed to adhere overnight. The next day, cells were incubated on ice with 100 μM Ec-CDT holotoxin, Ec-CdtAB or Ec-CdtBC for 30 min, washed and incubated at 37°C for 60 minutes. Cells were then fixed, stained, and imaged as described in Methods [anti-Ec-CdtB (green) and EEA1 or Rab9 antibody (red)]. White scale bars at the left panel of each treatment indicate 10 μm and the right insert panel indicate 2 μm. Quantification of microscopy results was performed using Pearson's coefficient values indicating colocalization of the Ec-CdtB signal with the EEA1 or Rab9 enriched vesicles. Images and quantitation are representative of those collected from a total of 30 randomly chosen cells analyzed during three independent experiments and error bars represent standard deviations.</p

    Tissue Culture LD<sub>50</sub> Values for Ec-Cdt Dimers and Trimers.

    No full text
    <p>Average values and standard deviation (+/-) were determined from at least three biological replicates, each performed in triplicate. NT, not tested; ND, value not determined due to lack of cytotoxicity.</p><p>Tissue Culture LD<sub>50</sub> Values for Ec-Cdt Dimers and Trimers.</p

    Tissue Culture LD<sub>50</sub> Values for Hd-Cdt Dimers and Trimers.

    No full text
    <p>Average values and standard deviation (+/-) were determined from at least three biological replicates, each performed in triplicate. NT, not tested; ND, value not determined due to lack of cytotoxicity.</p><p>Tissue Culture LD<sub>50</sub> Values for Hd-Cdt Dimers and Trimers.</p
    corecore