5 research outputs found

    Neuropeptide signaling through neurokinin-1 and neurokinin-2 receptors augments antigen presentation by human dendritic cells

    Get PDF
    Background: Neurotransmitters, including substance P (SP) and neurokinin A (NKA), are widely distributed in both the central and peripheral nervous system and their receptors, neurokinin-1 receptor (NK1R) and neurokinin-2 receptor (NK2R), are expressed on immune cells. However, the role of the NKA-NK2R axis in immune responses relative to the SP-NK1R signaling cascade has not been elucidated. Objective: We sought to examine the effect of neuropeptide signaling through NK1Rand NK2R on antigen presentation by dendritic cells (DCs) and the subsequent activation of effector Th cells. Methods: Expression levels of NK1R, NK2R, HLA-class II and costimulatory molecules of human MoDCs and cytokine production by birch pollen antigen-specific CD4+ T cells cocultured with MoDCs in the presence of NK1R and NK2R antagonists were evaluated by quantitative RT-PCR, flow cytometry or ELISA. NK1R and NK2R expression in the lung of patients with asthma and hypersensitivity pneumonitis was evaluated by immunohistochemistry. Results: Human MoDCs significantly upregulated NK2R and NK1R expression in response to poly I:C stimulation in a STAT1-dependent manner. Both NK2R and NK1R were expressed on alveolar macrophages and lung DCs from patients with asthma and pneumonitis hypersensitivity. Surface expression levels of HLA-class II and costimulatory molecules on DCs were modulated by NK1R or NK2R antagonists. Activation of birch pollen-derived antigen-specific CD4+ T cells and their production of cytokines including IL-4 and IFN-γ as well as IL-12 production by MoDCs, were suppressed by blocking NK1R or NK2R after in vitro antigen stimulation. Conclusions: NK1R- and NK2R-mediated neuropeptide signaling promotes both innate and acquired immune responses through activation of human DCs

    The C allele of JAK2 rs4495487 is an additional candidate locus that contributes to myeloproliferative neoplasm predisposition in the Japanese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) are myeloproliferative neoplasms (MPNs) characterized in most cases by a unique somatic mutation, <it>JAK2 </it>V617F. Recent studies revealed that <it>JAK2 </it>V617F occurs more frequently in a specific <it>JAK2 </it>haplotype, named <it>JAK2 </it>46/1 or GGCC haplotype, which is tagged by rs10974944 (C/G) and/or rs12343867 (T/C). This study examined the impact of single nucleotide polymorphisms (SNPs) of the <it>JAK2 </it>locus on MPNs in a Japanese population.</p> <p>Methods</p> <p>We sequenced 24 <it>JAK2 </it>SNPs in Japanese patients with PV. We then genotyped 138 MPN patients (33 PV, 96 ET, and 9 PMF) with known <it>JAK2 </it>mutational status and 107 controls for a novel SNP, in addition to two SNPs known to be part of the 46/1 haplotype (rs10974944 and rs12343867). Associations with risk of MPN were estimated by odds ratios and their 95% confidence intervals using logistic regression.</p> <p>Results</p> <p>A novel locus, rs4495487 (T/C), with a mutated T allele was significantly associated with PV. Similar to rs10974944 and rs12343867, rs4495487 in the <it>JAK2 </it>locus is significantly associated with <it>JAK2</it>-positive MPN. Based on the results of SNP analysis of the three <it>JAK2 </it>locus, we defined the "GCC genotype" as having at least one minor allele in each SNP (G allele in rs10974944, C allele in rs4495487, and C allele in rs12343867). The GCC genotype was associated with increased risk of both <it>JAK2 </it>V617F-positive and <it>JAK2 </it>V617F-negative MPN. In ET patients, leukocyte count and hemoglobin were significantly associated with <it>JAK2 </it>V617F, rather than the GCC genotype. In contrast, none of the <it>JAK2 </it>V617F-negative ET patients without the GCC genotype had thrombosis, and splenomegaly was frequently seen in this subset of ET patients. PV patients without the GCC genotype were significantly associated with high platelet count.</p> <p>Conclusions</p> <p>Our results indicate that the C allele of <it>JAK2 </it>rs4495487, in addition to the 46/1 haplotype, contributes significantly to the occurrence of <it>JAK2 </it>V617F-positive and <it>JAK2 </it>V617F-negative MPNs in the Japanese population. Because lack of the GCC genotype represents a distinct clinical-hematological subset of MPN, analyzing <it>JAK2 </it>SNPs and quantifying <it>JAK2 </it>V617F mutations will provide further insights into the molecular pathogenesis of MPN.</p

    A Case of Dysfunction after Reconstruction of Knee Extensor Mechanism Using Artificial Ligament

    No full text
    corecore