12 research outputs found

    Feeding behavior during long-term hexarelin administration in young and old rats

    No full text
    Ghrelin, a 28-amino-acid peptide isolated from the stomach, is the natural ligand of the GH-secretagogues receptor-la (GHS-R1a) and, so far, the only discovered circulating appetite-stimulating hormone. Similarly to ghrelin, many synthetic compounds belonging to the GHS family stimulate both GH secretion and feeding, whereas some stimulate GH secretion only. In the past years, studies have focused on the potential of the GHS to stimulate GH release during long-term treatment in humans and experimental animals. Few data are available about the extraendocrine effects of the GHS during several weeks of treatment, particularly in old rats. The aim of the present study was first to identify the lowest dose of hexarelin giving maximal stimulation of food intake both in young (3-month-old) and old rats (24-month-old). A dose-response study (80-320 mu g/kg, sc) revealed that hexarelin at the dose of 80 mu g/kg gave reproducibly maximal stimulation of food consumption in young as well as in old rats. Second, we evaluated the effect of 8-week daily sc treatment with hexarelin in young and old male rats. The outcome of the chronic study was that hexarelin (80 mu g/kg, sc, once daily) maintained a persistent significant orexigenic action throughout the treatment period, both in young and old rats. Interestingly, hexarelin treatment did not affect body weight gain either in young or old rats. We conclude that hexarelin is endowed with long-lasting orexigenic activity and might represent a potential therapeutic approach for pathological conditions characterized by a decline in food intake. (J. Endocrinol. Invest. 31: 647-652, 2008) (C) 2008, Editrice Kurti

    Ghrelin control of GH secretion and feeding behaviour: the role of the GHS-R1a receptor studied in vivo and in vitro using novel non-peptide ligands

    No full text
    Journal Article Research Support, Non-U.S. Gov't Italy EwdEnergy homeostasis is controlled by a complex regulatory system of molecules that affect food intake and that are critical for maintaining a stable body weight during life. Ghrelin is a peptide of 28 amino acid synthesized predominantly by the stomach and the gut, which activate the type 1a growth hormone (GH) secretagogue receptor (GHS-R1a), a G-protein coupled receptor. The acylated form of ghrelin potently stimulates GH secretion both in vitro and in vivo in several animal species, including humans. Beside the endocrine effect, ghrelin shows also extraendocrine activities, including stimulation of feeding behaviour. Several classes of small synthetic peptide and non-peptide ligands of the GHS-R1a have been described and are able to release GH and stimulate food intake. However, in time, it appeared that the stimulating effects on GH secretion could be divorced from those on food intake, suggesting that more than a single receptor might be involved. Several experimental data have even questioned the physiological role of ghrelin in the control of GH secretion and energy metabolism. By using novel agonists, partial agonists, and antagonists for the GHS-R1a receptor, we have studied whether the stimulation of this receptor could account for the purported physiological role of ghrelin. Our results demonstrate that the ability to bind in vitro the GHS-R1a is not predictive of the in vivo biological activity of the compounds and that the endocrine and extraendocrine effects could be mediated also by receptors different from the GHS-R1a

    Ghrelin control of GH secretion and feeding behaviour: the role of the GHS-R1a receptor studied in vivo and in vitro using novel non-peptide ligands

    No full text
    Journal Article Research Support, Non-U.S. Gov't Italy EwdEnergy homeostasis is controlled by a complex regulatory system of molecules that affect food intake and that are critical for maintaining a stable body weight during life. Ghrelin is a peptide of 28 amino acid synthesized predominantly by the stomach and the gut, which activate the type 1a growth hormone (GH) secretagogue receptor (GHS-R1a), a G-protein coupled receptor. The acylated form of ghrelin potently stimulates GH secretion both in vitro and in vivo in several animal species, including humans. Beside the endocrine effect, ghrelin shows also extraendocrine activities, including stimulation of feeding behaviour. Several classes of small synthetic peptide and non-peptide ligands of the GHS-R1a have been described and are able to release GH and stimulate food intake. However, in time, it appeared that the stimulating effects on GH secretion could be divorced from those on food intake, suggesting that more than a single receptor might be involved. Several experimental data have even questioned the physiological role of ghrelin in the control of GH secretion and energy metabolism. By using novel agonists, partial agonists, and antagonists for the GHS-R1a receptor, we have studied whether the stimulation of this receptor could account for the purported physiological role of ghrelin. Our results demonstrate that the ability to bind in vitro the GHS-R1a is not predictive of the in vivo biological activity of the compounds and that the endocrine and extraendocrine effects could be mediated also by receptors different from the GHS-R1a

    Biophysical characterization of a binding site for TLQP-21, a naturally occurring peptide which induces resistance to obesity.

    Get PDF
    Recently, we demonstrated that TLQP-21 triggers lipolysis and induces resistance to obesity by reducing fat accumulation [1]. TLQP-21 is a 21 amino acid peptide cleavage product of the neuroprotein VGF and was first identified in rat brain. Although TLQP-21 biological activity and its molecular signaling is under active investigation, a receptor for TLQP-21 has not yet been characterized. We now demonstrate that TLQP-21 stimulates intracellular calcium mobilization in CHO cells. Furthermore, using Atomic Force Microscopy (AFM), we also provide evidence of TLQP-21 binding-site characteristics in CHO cells. AFM was used in force mapping mode equipped with a cantilever suitably functionalized with TLQP-21. Attraction of this functionalized probe to the cell surface was specific and consistent with the biological activity of TLQP-21; by contrast, there was no attraction of a probe functionalized with biologically inactive analogues. We detected interaction of the peptide with the binding-site by scanning the cell surface with the cantilever tip. The attractive force between TLQP-21 and its binding site was measured, statistically analyzed and quantified at approximately 40 pN on average, indicating a single class of binding sites. Furthermore we observed that the distribution of these binding sites on the surface was relatively uniform

    The onset of de novo autoantibodies in healthcare workers after mRNA based anti-SARS-CoV-2 vaccines: a single centre prospective follow-up study

    No full text
    Nowadays, data concerning the risk of autoimmune disease after SARS-CoV-2 (COVID-19) vaccination is controversial. The aim of this single centre prospective follow-up study was to evaluate whether healthcare workers (HCWs) vaccinated with BNT162b2 mRNA and mRNA-1273 will show a development and/or a persistence of autoantibodies, focussing on the detection of antibodies against nuclear antigens (antinuclear antibodies, ANA). We enrolled 155 HCWs, however only 108 of them received the third dose and were considered for further analysis. Blood samples were collected before vaccine inoculation (T0), at 3 (T1) and 12 months (T2) after the first dose. All samples were analysed for the presence of a) ANA using indirect Immunofluorescence [IIF] (dilutions of 1:80, 1:160. 1:320 and 1:640), and anti-smooth muscle antibodies (ASMA); b) anti-myeloperoxidase (anti-MPO), anti-proteinase 3 (anti-PR3) and anti-citrullinated peptide antibodies (aCCP) [FEIA]; c) anti-phospholipid antibodies (anticardiolipin [aCL], anti-beta-2- glycoprotein I [anti-ß-2GPI] (Chemiluminescence). Line-blot technology was performed using the following kit: EUROLINE ANA profile 3 plus DFS70 (IgG). Our research suggests that mRNA based anti-SARSCoV-2 vaccines can induce the production of de novo ANA in 22/77(28,57%) of subjects and that the percentage of positivity seems to be directly correlated to the number of vaccine expositions: 6/77 (7,79%) after 2 doses; 16/77 (20,78%) after 3 doses. Since it is known that hyperstimulation of the immune system could lead to autoimmunity, these preliminary results seem to further sustain the idea that the hyperstimulation of the immune system might lead to an autoinflammatory mechanism and eventually to autoimmune disorders. However, the link between SARS-CoV-2 vaccination and the development of autoimmune diseases needs to be further investigated
    corecore