27 research outputs found

    Draft Genome of Pseudomonas sp. Strain 11/12A, Isolated from Lake Washington Sediment.

    Get PDF
    We announce here the genome sequencing of Pseudomonas sp. strain 11/12A from Lake Washington sediment. From the genome content, a versatile lifestyle is predicted but not one of bona fide methylotrophy. With the availability of its genomic sequence, Pseudomonas sp. 11/12A presents a prospective model for studying microbial communities in lake sediments

    Draft genomes of two strains of flavobacterium isolated from lake washington sediment.

    Get PDF
    We report sequencing the genomes of two new Flavobacterium strains isolated from Lake Washington sediment. From genomic contents, versatile lifestyles were predicted but not bona fide methylotrophy. With the availability of their genomic sequences, the new Flavobacterium strains present prospective models for studying microbial communities in lake sediments

    Draft Genome of Janthinobacterium sp. RA13 Isolated from Lake Washington Sediment.

    Get PDF
    Sequencing the genome of Janthinobacterium sp. RA13 from Lake Washington sediment is announced. From the genome content, a versatile life-style is predicted, but not bona fide methylotrophy. With the availability of its genomic sequence, Janthinobacterium sp. RA13 presents a prospective model for studying microbial communities in lake sediments

    Draft genome sequences of five new strains of methylophilaceae isolated from lake washington sediment.

    Get PDF
    We sequenced the genomes of five new Methylophilaceae strains isolated from Lake Washington sediment. We used the new sequences to sort these new strains into specific Methylophilaceae ecotypes, including one novel ecotype. The new genomes expand the known diversity of Methylophilaceae and provide new models for studying the ecology of methylotrophy

    Draft genome sequences of gammaproteobacterial methanotrophs isolated from lake washington sediment.

    Get PDF
    The genomes of Methylosarcina lacus LW14(T) (=ATCC BAA-1047(T) = JCM 13284(T)), Methylobacter sp. strain 21/22, Methylobacter sp. strain 31/32, Methylomonas sp. strain LW13, Methylomonas sp. strain MK1, and Methylomonas sp. strain 11b were sequenced and are reported here. All the strains are obligately methanotrophic bacteria isolated from the sediment of Lake Washington

    The expanded diversity of methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes.

    Get PDF
    We describe five novel Methylophilaceae ecotypes from a single ecological niche in Lake Washington, USA, and compare them to three previously described ecotypes, in terms of their phenotype and genome sequence divergence. Two of the ecotypes appear to represent novel genera within the Methylophilaceae. Genome-based metabolic reconstruction highlights metabolic versatility of Methylophilaceae with respect to methylotrophy and nitrogen metabolism, different ecotypes possessing different combinations of primary substrate oxidation systems (MxaFI-type methanol dehydrogenase versus XoxF-type methanol dehydrogenase; methylamine dehydrogenase versus N-methylglutamate pathway) and different potentials for denitrification (assimilatory versus respiratory nitrate reduction). By comparing pairs of closely related genomes, we uncover that site-specific recombination is the main means of genomic evolution and strain divergence, including lateral transfers of genes from both closely- and distantly related taxa. The new ecotypes and the new genomes contribute significantly to our understanding of the extent of genomic and metabolic diversity among organisms of the same family inhabiting the same ecological niche. These organisms also provide novel experimental models for studying the complexity and the function of the microbial communities active in methylotrophy
    corecore