8 research outputs found

    Selenium and Nano-Selenium Biofortification for Human Health

    Get PDF
    Selenium is an essential micronutrient required for the health of humans and lower plants, but its importance for higher plants is still being investigated. The biological functions of Se related to human health revolve around its presence in 25 known selenoproteins (e.g., selenocysteine or the 21st amino acid). Humans may receive their required Se through plant uptake of soil Se, foods enriched in Se, or Se dietary supplements. Selenium nanoparticles (Se-NPs) have been applied to biofortified foods and feeds. Due to low toxicity and high e ciency, Se-NPs are used in applications such as cancer therapy and nano-medicines. Selenium and nano-selenium may be able to support and enhance the productivity of cultivated plants and animals under stressful conditions because they are antimicrobial and anti-carcinogenic agents, with antioxidant capacity and immune-modulatory efficacy. Thus, nano-selenium could be inserted in the feeds of fish and livestock to improvise stress resilience and productivity. This review offers new insights in Se and Se-NPs biofortification for edible plants and farm animals under stressful environments. Further, extensive research on Se-NPs is required to identify possible adverse effects on humans and their cytotoxicity.Peer Reviewe

    Efficient Co-Utilization of Biomass-Derived Mixed Sugars for Lactic Acid Production by <i>Bacillus coagulans</i> Azu-10

    No full text
    Lignocellulosic and algal biomass are promising substrates for lactic acid (LA) production. However, lack of xylose utilization and/or sequential utilization of mixed-sugars (carbon catabolite repression, CCR) from biomass hydrolysates by most microorganisms limits achievable titers, yields, and productivities for economical industry-scale production. This study aimed to design lignocellulose-derived substrates for efficient LA production by a thermophilic, xylose-utilizing, and inhibitor-resistant Bacillus coagulans Azu-10. This strain produced 102.2 g/L of LA from 104 g/L xylose at a yield of 1.0 g/g and productivity of 3.18 g/L/h. The CCR effect and LA production were investigated using different mixtures of glucose (G), cellobiose (C), and/or xylose (X). Strain Azu-10 has efficiently co-utilized GX and CX mixture without CCR; however, total substrate concentration (>75 g/L) was the only limiting factor. The strain completely consumed GX and CX mixture and homoferemnatively produced LA up to 76.9 g/L. On the other hand, fermentation with GC mixture exhibited obvious CCR where both glucose concentration (>25 g/L) and total sugar concentration (>50 g/L) were the limiting factors. A maximum LA production of 50.3 g/L was produced from GC mixture with a yield of 0.93 g/g and productivity of 2.09 g/L/h. Batch fermentation of GCX mixture achieved a maximum LA concentration of 62.7 g/L at LA yield of 0.962 g/g and productivity of 1.3 g/L/h. Fermentation of GX and CX mixture was the best biomass for LA production. Fed-batch fermentation with GX mixture achieved LA production of 83.6 g/L at a yield of 0.895 g/g and productivity of 1.39 g/L/h

    Nanofungicides with Selenium and Silicon Can Boost the Growth and Yield of Common Bean (<i>Phaseolus vulgaris</i> L.) and Control Alternaria Leaf Spot Disease

    No full text
    There is an urgent need to reduce the intensive use of chemical fungicides due to their potential damage to human health and the environment. The current study investigated whether nano-selenium (nano-Se) and nano-silica (nano-SiO2) could be used against the leaf spot disease caused by Alternaria alternata in a common bean (Phaseolus vulgaris L.). The engineered Se and SiO2 nanoparticles were compared to a traditional fungicide and a negative control with no treatment, and experiments were repeated during two successive seasons in fields and in vitro. The in vitro study showed that 100 ppm nano-Se had an efficacy rate of 85.1% on A. alternata mycelial growth, followed by the combined applications (Se + SiO2 at half doses) with an efficacy rate of 77.8%. The field study showed that nano-Se and the combined application of nano-Se and nano-SiO2 significantly decreased the disease severity of A. alternata. There were no significant differences among nano-Se, the combined application, and the fungicide treatment (positive control). As compared to the negative control (no treatment), leaf weight increased by 38.3%, the number of leaves per plant by 25.7%, chlorophyll A by 24%, chlorophyll B by 17.5%, and total dry seed yield by 30%. In addition, nano-Se significantly increased the enzymatic capacity (i.e., CAT, POX, PPO) and antioxidant activity in the leaves. Our current study is the first to report that the selected nano-minerals are real alternatives to chemical fungicides for controlling A. alternata in common beans. This work suggests the potential of nanoparticles as alternatives to fungicides. Further studies are needed to better understand the mechanisms and how different nano-materials could be used against phytopathogens

    Optimizing the In-Vessel Composting Process of Sugarbeet Dry-Cleaning Residue

    No full text
    Rapid urbanization and industrialization around the world have created massive amounts of organic residues, which have been prioritized for conversion into valuable resources through the composting process to keep their harmful effect at a minimum. This research aimed to assess the influence of active and passive aeration on composting mass of sugar beet residues in the case of using additives (e.g., charcoal only or manure only or combination). Some physicochemical properties of composting mass were analyzed on certain days of composting. Some parameters including temperature鈥搕ime profile, carbon to nitrogen ratio (C/N ratio), moisture content, electrical conductivity, pH, germination and microbial population enumeration of compost were measured. Cress germination test was conducted for each medium of germination which contains a mixture of soil and compost (at a ratio of 3:1) taken from each treatment. The results showed that temperature鈥搕ime profile data of composting mass showed an irregularity. Forcedly aerated composting mass did not demonstrate a thermophilic phase while passively aerated ones did not show a mesophilic phase. Carbon to nitrogen (C/N) ratio reduction was greater in most forcedly aerated composting mass than passively aerated on days from 1 to 33 of composting period. The results further showed that electrical conductivity decreased at the end of the composting period where it ranged from 2.55 to 3.1 dS/m. Germination medium containing forcedly aerated compost treated with a combination of charcoal and manure achieved the highest germination index which was higher than the control sample by 58.63% followed by forcedly aerated composting mass treated by charcoal only which exceeded the control sample by 5.35%. Strong correlation coefficient (r > 0.80) for the relationship between germination index and number of bacteria was obtained on day 17th of composting period

    Efficacy of Mushroom Metabolites (Pleurotus ostreatus) as A Natural Product for the Suppression of Broomrape Growth (Orobanche crenata Forsk) in Faba Bean Plants

    No full text
    Broomrape parasitism on faba bean (Vicia faba L.) is the most destructive factor for this crop in Egypt. Pot experiments were conducted during the two successive seasons 2017/2018 and 2018/2019 to study the mitigation of broomrape stress on faba bean using a ten-fold dilution of 10% (w/v) spent mushroom substrate extract (SMSE) of Pleurotus ostreatus and the same dilution of culture filtrate of mushroom (MCF) grown in potato dextrose broth (PDB) at a rate of 48 l hectare&minus;1 compared with the commercial herbicide Roundup (Glyphosate 48% emulsifiable concentrate) at a rate of 144 cm3 ha&minus;1 on the two varieties (Misr3 and Sakha3) cultivated in broomrape-infested soil. The treatments include the use of mushroom products as foliar spray and/or soil amendment in addition to Roundup spraying as a recommended treatment. Using Gas Chromatography-Mass Spectrometry (GC-MS) spectroscopy, our results indicate that the major components of the two mushroom products were bioactive compounds such as polyphenol and high molecular weight aliphatic and aromatic hydrocarbons that may interfere with parasite and host metabolism. These results indicated that SMSE of P. ostreatus and MCF of the same mushroom grown in potato dextrose broth (PDB) gave the best control of broomrape, and increased plant height, root length, leaf area, chlorophyll concentration, relative water content and seed yield (g plant&minus;1), as well as anatomical characters of leaves in the two faba bean varieties (Misr3 and Sakha3), such as upper and lower epidermis, palisade tissue, spongy tissue and vascular bundles. Additionally, electrolyte leakage was decreased in the treated plants compared to control plants and the plants treated with Roundup (glyphosate) because of the important role of SMSE and MCF in the improvement of faba bean water status

    Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management

    No full text
    Soil is the main component in the agroecosystem besides water, microbial communities, and cultivated plants. Several problems face soil, including soil pollution, erosion, salinization, and degradation on a global level. Many approaches have been applied to overcome these issues, such as phyto-, bio-, and nanoremediation through different soil management tools. Mushrooms can play a vital role in the soil through bio-nanoremediation, especially under the biological synthesis of nanoparticles, which could be used in the bioremediation process. This review focuses on the green synthesis of nanoparticles using mushrooms and the potential of bio-nanoremediation for polluted soils. The distinguished roles of mushrooms of soil improvement are considered a crucial dimension for sustainable soil management, which may include controlling soil erosion, improving soil aggregates, increasing soil organic matter content, enhancing the bioavailability of soil nutrients, and resorting to damaged and/or polluted soils. The field of bio-nanoremediation using mushrooms still requires further investigation, particularly regarding the sustainable management of soils

    Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture

    No full text
    Is there any relationship between plant nutrition and human health? The overall response to this question is very positive, and a strong relationship between the nutrition of plants and humans has been reported in the literature. The nutritional status of edible plants consumed by humans can have a negative or positive impact on human health. This review was designed to assess the importance of plant bioactive compounds for human health under the umbrella of sustainable agriculture. With respect to the first research question, it was found that plant bioactives (e.g., alkaloids, carotenoids, flavonoids, phenolics, and terpenoids) have a crucial role in human health due to their therapeutic benefits, and their potentiality depends on several factors, including botanical, environmental, and clinical attributes. Plant bioactives could be produced using plant tissue culture tools (as a kind of agro-biotechnological method), especially in cases of underexploited or endangered plants. Bioactive production of plants depends on many factors, especially climate change (heat stress, drought, UV radiation, ozone, and elevated CO2), environmental pollution, and problematic soils (degraded, saline/alkaline, waterlogged, etc.). Under the previously mentioned stresses, in reviewing the literature, a positive or negative association was found depending on the kinds of stress or bioactives and their attributes. The observed correlation between plant bioactives and stress (or growth factors) might explain the importance of these bioactives for human health. Their accumulation in stressed plants can increase their tolerance to stress and their therapeutic roles. The results of this study are in keeping with previous observational studies, which confirmed that the human nutrition might start from edible plants and their bioactive contents, which are consumed by humans. This review is the first report that analyzes this previously observed relationship using pictorial presentation

    Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article

    No full text
    Soil is a real treasure that humans cannot live without. Therefore, it is very important to sustain and conserve soils to guarantee food, fiber, fuel, and other human necessities. Healthy or high-quality soils that include adequate fertility, diverse ecosystems, and good physical properties are important to allow soil to produce healthy food in support of human health. When a soil suffers from degradation, the soil鈥檚 productivity decreases. Soil restoration refers to the reversal of degradational processes. This study is a pictorial review on the nano-restoration of soil to return its fertility. Restoring soil fertility for zero hunger and restoration of degraded soils are also discussed. Sustainable production of nanoparticles using plants and microbes is part of the process of soil nano-restoration. The nexus of nanoparticle鈥損lant鈥搈icrobe (NPM) is a crucial issue for soil fertility. This nexus itself has several internal interactions or relationships, which control the bioavailability of nutrients, agrochemicals, or pollutants for cultivated plants. The NPM nexus is also controlled by many factors that are related to soil fertility and its restoration. This is the first photographic review on nano-restoration to return and sustain soil fertility. However, several additional open questions need to be answered and will be discussed in this work
    corecore