1,854 research outputs found
Tunable negative permeability in a quantum plasmonic metamaterial
We consider the integration of quantum emitters into a negative permeability
metamaterial design in order to introduce tunability as well as nonlinear
behavior. The unit cell of our metamaterial is a ring of metamolecules, each
consisting of a metal nanoparticle and a two-level semiconductor quantum dot
(QD). Without the QDs, the ring of the unit cell is known to act as an
artificial optical magnetic resonator. By adding the QDs we show that a Fano
interference profile is introduced into the magnetic field scattered from the
ring. This induced interference is shown to cause an appreciable effect in the
collective magnetic resonance of the unit cell. We find that the interference
provides a means to tune the response of the negative permeability
metamaterial. The exploitation of the QD's inherent nonlinearity is proposed to
modulate the metamaterial's magnetic response with a separate control field.Comment: 11 pages, 6 figure
Experimental Demonstration of Decoherence-Free One-Way Information Transfer
We report the experimental demonstration of a one-way quantum protocol
reliably operating in the presence of decoherence. Information is protected by
designing an appropriate decoherence-free subspace for a cluster state
resource. We demonstrate our scheme in an all-optical setup, encoding the
information into the polarization states of four photons. A measurement-based
one-way information-transfer protocol is performed with the photons exposed to
severe symmetric phase-damping noise. Remarkable protection of information is
accomplished, delivering nearly ideal outcomes.Comment: 5 pages, 3 figures, RevTeX
Experimental realization of Dicke states of up to six qubits for multiparty quantum networking
We report the first experimental generation and characterization of a
six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02
with respect to an ideal Dicke state and violates a witness detecting genuine
six-qubit entanglement by four standard deviations. We confirm characteristic
Dicke properties of our resource and demonstrate its versatility by projecting
out four- and five-photon Dicke states, as well as four-photon GHZ and W
states. We also show that Dicke states have interesting applications in
multiparty quantum networking protocols such as open-destination teleportation,
telecloning and quantum secret sharing.Comment: 4 pages, 4 figures, RevTeX
Decoherence-based exploration of d-dimensional one-way quantum computation
We study the effects of amplitude and phase damping decoherence in
d-dimensional one-way quantum computation (QC). Our investigation shows how
information transfer and entangling gate simulations are affected for d>=2. To
understand motivations for extending the one-way model to higher dimensions, we
describe how d-dimensional qudit cluster states deteriorate under environmental
noise. In order to protect quantum information from the environment we consider
the encoding of logical qubits into physical qudits and compare entangled pairs
of linear qubit-cluster states with single qudit clusters of equal length and
total dimension. Our study shows a significant reduction in the performance of
one-way QC for d>2 in the presence of Markovian type decoherence models.Comment: 8 pages, 11 figures, RevTeX
Long-range surface plasmon polariton excitation at the quantum level
We provide the quantum mechanical description of the excitation of long-range
surface plasmon polaritons (LRSPPs) on thin metallic strips. The excitation
process consists of an attenuated-reflection setup, where efficient
photon-to-LRSPP wavepacket-transfer is shown to be achievable. For calculating
the coupling, we derive the first quantization of LRSPPs in the polaritonic
regime. We study quantum statistics during propagation and characterize the
performance of photon-to-LRSPP quantum state transfer for single-photons,
photon-number states and photonic coherent superposition states.Comment: 9 pages, 6 figures, RevTeX4; Accepted versio
One-way quantum computing in a decoherence-free subspace
We introduce a novel scheme for one-way quantum computing (QC) based on the
use of information encoded qubits in an effective cluster state resource. With
the correct encoding structure, we show that it is possible to protect the
entangled resource from phase damping decoherence, where the effective cluster
state can be described as residing in a Decoherence-Free Subspace (DFS) of its
supporting quantum system. One-way QC then requires either single or two-qubit
adaptive measurements. As an example where this proposal can be realized, we
describe an optical lattice setup where the scheme provides robust quantum
information processing. We also outline how one can adapt the model to provide
protection from other types of decoherence.Comment: 9 pages, 4 figures, RevTeX
Backpropagation training in adaptive quantum networks
We introduce a robust, error-tolerant adaptive training algorithm for
generalized learning paradigms in high-dimensional superposed quantum networks,
or \emph{adaptive quantum networks}. The formalized procedure applies standard
backpropagation training across a coherent ensemble of discrete topological
configurations of individual neural networks, each of which is formally merged
into appropriate linear superposition within a predefined, decoherence-free
subspace. Quantum parallelism facilitates simultaneous training and revision of
the system within this coherent state space, resulting in accelerated
convergence to a stable network attractor under consequent iteration of the
implemented backpropagation algorithm. Parallel evolution of linear superposed
networks incorporating backpropagation training provides quantitative,
numerical indications for optimization of both single-neuron activation
functions and optimal reconfiguration of whole-network quantum structure.Comment: Talk presented at "Quantum Structures - 2008", Gdansk, Polan
- …