770 research outputs found

    Linear and angular momentum of electromagnetic fields generated by an arbitrary distribution of charge and current densities at rest

    Full text link
    Starting from Stratton-Panofsky-Phillips-Jefimenko equations for the electric and magnetic fields generated by completely arbitrary charge and current density distributions at rest, we derive far-zone approximations for the fields, containing all components, dominant as well as sub-dominant. Using these approximate formulas, we derive general formulas for the total electromagnetic linear momentum and angular momentum, valid at large distances from arbitrary, non-moving charge and current sources.Comment: Six pages, one figure. Errors correcte

    Storming Majorana's Tower with OAM states of light in a plasma

    Full text link
    We extend the relationship between mass and spin angular momentum, described by the bosonic spectrum of positive definite mass particles of the Majorana solution to the Dirac equation, to photons that acquire an effective Proca mass through the Anderson-Higgs mechanism when they propagate in a plasma. In an earlier paper we showed that if the plasma is structured, it can impart orbital angular momentum (OAM) to the photons that reduces the total Proca photon mass. Here we show, through a generalisation of Majorana's solution, that photons with OAM in a plasma cannot assume negative squared mass states. This means that there exist interesting analogies with Quantum Gravity or General Relativity models involving a modified action of the Lorentz group.Comment: 4 pages; Corrected, updated versio

    The physics of angular momentum radio

    Full text link
    Wireless communications, radio astronomy and other radio science applications are predominantly implemented with techniques built on top of the electromagnetic linear momentum (Poynting vector) physical layer. As a supplement and/or alternative to this conventional approach, techniques rooted in the electromagnetic angular momentum physical layer have been advocated, and promising results from proof-of-concept radio communication experiments using angular momentum were recently published. This sparingly exploited physical observable describes the rotational (spinning and orbiting) physical properties of the electromagnetic fields and the rotational dynamics of the pertinent charge and current densities. In order to facilitate the exploitation of angular momentum techniques in real-world implementations, we present a systematic, comprehensive theoretical review of the fundamental physical properties of electromagnetic angular momentum observable. Starting from an overview that puts it into its physical context among the other Poincar\'e invariants of the electromagnetic field, we describe the multi-mode quantized character and other physical properties that sets electromagnetic angular momentum apart from the electromagnetic linear momentum. These properties allow, among other things, a more flexible and efficient utilization of the radio frequency spectrum. Implementation aspects are discussed and illustrated by examples based on analytic and numerical solutions.Comment: Fixed LaTeX rendering errors due to inconsistencies between arXiv's LaTeX machine and texlive in OpenSuSE 13.

    Evaluation of the economic and environmental performance of low-temperature heat to power conversion using a reverse electrodialysis - Multi-effect distillation system

    Get PDF
    In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 ◦C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future

    Mycobacterium tuberculosis Drives Expansion of Low-Density Neutrophils Equipped With Regulatory Activities

    Get PDF
    In human tuberculosis (TB) neutrophils represent the most commonly infected phagocyte but their role in protection and pathology is highly contradictory. Moreover, a subset of low-density neutrophils (LDNs) has been identified in TB, but their functions remain unclear. Here, we have analyzed total neutrophils and their low-density and normal-density (NDNs) subsets in patients with active TB disease, in terms of frequency, phenotype, functional features, and gene expression signature. Full-blood counts from Healthy Donors (H.D.), Latent TB infected, active TB, and cured TB patients were performed. Frequency, phenotype, burst activity, and suppressor T cell activity of the two different subsets were assessed by flow cytometry while NETosis and phagocytosis were evaluated by confocal microscopy. Expression analysis was performed by using the semi-quantitative RT-PCR array technology. Elevated numbers of total neutrophils and a high neutrophil/lymphocyte ratio distinguished patients with active TB from all the other groups. PBMCs of patients with active TB disease contained elevated percentages of LDNs compared with those of H.D., with an increased expression of CD66b, CD33, CD15, and CD16 compared to NDNs. Transcriptomic analysis of LDNs and NDNs purified from the peripheral blood of TB patients identified 12 genes differentially expressed: CCL5, CCR5, CD4, IL10, LYZ, and STAT4 were upregulated, while CXCL8, IFNAR1, NFKB1A, STAT1, TICAM1, and TNF were downregulated in LDNs, as compared to NDNs. Differently than NDNs, LDNs failed to phagocyte live Mycobacterium tuberculosis (M. tuberculosis) bacilli, to make oxidative burst and NETosis, but caused significant suppression of antigen-specific and polyclonal T cell proliferation which was partially mediated by IL-10. These insights add a little dowel of knowledge in understanding the pathogenesis of human TB

    Photon Orbital Angular Momentum and Mass in a Plasma Vortex

    Full text link
    We analyse the Anderson-Higgs mechanism of photon mass acquisition in a plasma and study the contribution to the mass from the orbital angular momentum acquired by a beam of photons when it crosses a spatially structured charge distribution. To this end we apply Proca-Maxwell equations in a static plasma with a particular spatial distribution of free charges, notably a plasma vortex, that is able to impose orbital angular momentum (OAM) onto light. In addition to the mass acquisition of the conventional Anderson-Higgs mechanism, we find that the photon acquires an additional mass from the OAM and that this mass reduces the Proca photon mass.Comment: Four pages, no figures. Error corrections, improved notation, refined derivation
    • …
    corecore