Wireless communications, radio astronomy and other radio science applications
are predominantly implemented with techniques built on top of the
electromagnetic linear momentum (Poynting vector) physical layer. As a
supplement and/or alternative to this conventional approach, techniques rooted
in the electromagnetic angular momentum physical layer have been advocated, and
promising results from proof-of-concept radio communication experiments using
angular momentum were recently published. This sparingly exploited physical
observable describes the rotational (spinning and orbiting) physical properties
of the electromagnetic fields and the rotational dynamics of the pertinent
charge and current densities. In order to facilitate the exploitation of
angular momentum techniques in real-world implementations, we present a
systematic, comprehensive theoretical review of the fundamental physical
properties of electromagnetic angular momentum observable. Starting from an
overview that puts it into its physical context among the other Poincar\'e
invariants of the electromagnetic field, we describe the multi-mode quantized
character and other physical properties that sets electromagnetic angular
momentum apart from the electromagnetic linear momentum. These properties
allow, among other things, a more flexible and efficient utilization of the
radio frequency spectrum. Implementation aspects are discussed and illustrated
by examples based on analytic and numerical solutions.Comment: Fixed LaTeX rendering errors due to inconsistencies between arXiv's
LaTeX machine and texlive in OpenSuSE 13.