69 research outputs found

    Hybrid life-cycle assessment of algal biofuel production

    Full text link
    © 2014 Elsevier Ltd. The objective of this work is to establish whether algal bio-crude production is environmentally, economically and socially sustainable. To this end, an economic multi-regional input-output model of Australia was complemented with engineering process data on algal bio-crude production. This model was used to undertake hybrid life-cycle assessment for measuring the direct, as well as indirect impacts of producing bio-crude. Overall, the supply chain of bio-crude is more sustainable than that of conventional crude oil. The results indicate that producing 1. million tonnes of bio-crude will generate almost 13,000 new jobs and 4. billion dollars' worth of economic stimulus. Furthermore, bio-crude production will offer carbon sequestration opportunities as the production process is net carbon-negative

    Process and reactor design for biophotolytic hydrogen production

    Full text link
    The green alga Chlamydomonas reinhardtii has the ability to produce molecular hydrogen (H2), a clean and renewable fuel, through the biophotolysis of water under sulphur-deprived anaerobic conditions. The aim of this study was to advance the development of a practical and scalable biophotolytic H2 production process. Experiments were carried out using a purpose-built flat-plate photobioreactor, designed to facilitate green algal H2 production at the laboratory scale and equipped with a membrane-inlet mass spectrometry system to accurately measure H2 production rates in real time. The nutrient control method of sulphur deprivation was used to achieve spontaneous H2 production following algal growth. Sulphur dilution and sulphur feed techniques were used to extend algal lifetime in order to increase the duration of H2 production. The sulphur dilution technique proved effective at encouraging cyclic H 2 production, resulting in alternating Chlamydomonas reinhardtii recovery and H2 production stages. The sulphur feed technique enabled photobioreactor operation in chemostat mode, resulting in a small improvement in H2 production duration. A conceptual design for a large-scale photobioreactor was proposed based on these experimental results. This photobioreactor has the capacity to enable continuous and economical H 2 and biomass production using green algae. The success of these complementary approaches demonstrate that engineering advances can lead to improvements in the scalability and affordability of biophotolytic H2 production, giving increased confidence that H2 can fulfil its potential as a sustainable fuel of the future. © 2013 the Owner Societies

    Spectral effects on Symbiodinium photobiology studied with a programmable light engine

    Get PDF
    ©2014 Wangpraseurt et al. The spectral light field of Symbiodinium within the tissue of the coral animal host can deviate strongly from the ambient light field on a coral reef and that of artificial light sources used in lab studies on coral photobiology. Here, we used a novel approach involving light microsensor measurements and a programmable light engine to reconstruct the spectral light field that Symbiodinium is exposed to inside the coral host and the light field of a conventional halogen lamp in a comparative study of Symbiodinium photobiology. We found that extracellular gross photosynthetic O 2 evolution was unchanged under different spectral illumination, while the more red-weighted halogen lamp spectrum decreased PSII electron transport rates and there was a trend towards increased light-enhanced dark respiration rates under excess irradiance. The approach provided here allows for reconstructing and comparing intra-tissue coral light fields and other complex spectral compositions of incident irradiance. This novel combination of sensor technologies provides a framework to studying the influence of macro- and microscale optics on Symbiodinium photobiology with unprecedented spectral resolution

    The Small 11-kDa Protein from B19 Parvovirus Binds Growth Factor Receptor-Binding Protein 2 in Vitro in a Src Homology 3 Domain/Ligand-Dependent Manner

    Get PDF
    AbstractThe small 11-kDa proteins of B19 parvovirus contain three proline-rich regions which conform to consensus Src homology 3 (SH3) ligand sequences present in signaling molecules within the cell. We have shown that the B19 11-kDa proteins specifically interact with the growth factor receptor-binding protein 2 (Grb2) in vitro. Mutation of prolines within one of the three SH3 ligand-like sequences decreases the binding of B19 11-kDa proteins to Grb2, suggesting that the proline-rich region is involved in the B19 11-kDa/Grb2 interaction. Therefore, the B19 11-kDa proteins may function to alter Grb2-mediated signaling by disrupting SH3 domain/ligand interactions. These results implicate the 11-kDa proteins in B19 pathogenesis through perturbation of normal cellular signaling pathways

    Differences in Modified-Return-to-Work by Immigration Characteristics Among a Cohort of Workers in British Columbia, Canada

    Get PDF
    Introduction: To investigate differences in modified-return-to work (MRTW) within the first 30 days of a work-related, short-term disability injury by immigration characteristics. This question was part of a program of research investigating differences in work and health experiences among immigrant workers and explanations for longer work disability durations.Methods: Workers’ compensation claims, immigration records and medical registry data were linked to identify a sample of workers in British Columbia, Canada with a short-term disability claim for a work-related back strain, concussion, limb fracture or connective tissue injury occurring between 2009 and 2015. Multivariable logistic regressions, stratified by injury type, investigated the odds of MRTW, defined as at least one day within the first 30 days on claim, associated with immigration characteristics, defined as a Canadian-born worker versus a worker who immigrated via the economic, family member or refugee/other humanitarian classification.Results: Immigrant workers who arrived to Canada as a family member or as a refugee/other immigrant had a reduced odds of MRTW within the first 30 days of work disability for a back strain, concussion and limb fracture, compared to Canadian-born workers. Differences in MRTW were not observed for immigrant workers who arrived to Canada via the economic classification, or for connective tissue injuries.Conclusion: The persistent and consistent finding of reduced MRTW for the same injury for different immigration classifications highlights contexts (work, health, social, language) that disadvantage some immigrants upon arrival to Canada and that persist over time even after entry into the workforce, including barriers to MRTW.</p

    Performance of titanium salts compared to conventional FeCl<inf>3</inf> for the removal of algal organic matter (AOM) in synthetic seawater: Coagulation performance, organic fraction removal and floc characteristics

    Full text link
    © 2017 Elsevier Ltd During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl4) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl4 and PTC achieved better performance than FeCl3 in terms of turbidity, UV254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography – organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl3 indicated that sweep flocculation is also a contributing mechanism for the coagulation of AOM

    Bacteria-mediated aggregation of the marine phytoplankton Thalassiosira weissflogii and Nannochloropsis oceanica

    Full text link
    © 2020, The Author(s). The ecological relationships between heterotrophic bacteria and marine phytoplankton are complex and multifaceted, and in some instances include the bacteria-mediated aggregation of phytoplankton cells. It is not known to what extent bacteria stimulate aggregation of marine phytoplankton, the variability in aggregation capacity across different bacterial taxa or the potential role of algogenic exopolymers in this process. Here we screened twenty bacterial isolates, spanning nine orders, for their capacity to stimulate aggregation of two marine phytoplankters, Thalassiosira weissflogii and Nannochloropsis oceanica. In addition to phytoplankton aggregation efficiency, the production of exopolymers was measured using Alcian Blue. Bacterial isolates from the Rhodobacterales, Flavobacteriales and Sphingomonadales orders stimulated the highest levels of cell aggregation in phytoplankton cultures. When co-cultured with bacteria, exopolymer concentration accounted for 34.1% of the aggregation observed in T. weissflogii and 27.7% of the aggregation observed in N. oceanica. Bacteria-mediated aggregation of phytoplankton has potentially important implications for mediating vertical carbon flux in the ocean and in extracting phytoplankton cells from suspension for biotechnological applications

    Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis

    Full text link
    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P.damicornis at 440nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII-1 s-1, consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals. © 2014 Elsevier Masson SAS

    Photosynthetic acclimation of Nannochloropsis oculata investigated by multi-wavelength chlorophyll fluorescence analysis

    Full text link
    Multi-wavelength chlorophyll fluorescence analysis was utilised to examine the photosynthetic efficiency of the biofuel-producing alga Nannochloropsis oculata, grown under two light regimes; low (LL) and high (HL) irradiance levels. Wavelength dependency was evident in the functional absorption cross-section of Photosystem II (σII(λ)), absolute electron transfer rates (ETR(II)), and non-photochemical quenching (NPQ) of chlorophyll fluorescence in both HL and LL cells. While σII(λ) was not significantly different between the two growth conditions, HL cells upregulated ETR(II) 1.6-1.8-fold compared to LL cells, most significantly in the wavelength range of 440-540nm. This indicates preferential utilisation of blue-green light, a highly relevant spectral region for visible light in algal pond conditions. Under these conditions, the HL cells accumulated saturated fatty acids, whereas polyunsaturated fatty acids were more abundant in LL cells. This knowledge is of importance for the use of N. oculata for fatty acid production in the biofuel industry. © 2014 Elsevier Ltd

    The Effect of Diel Temperature and Light Cycles on the Growth of Nannochloropsis oculata in a Photobioreactor Matrix

    Get PDF
    A matrix of photobioreactors integrated with metabolic sensors was used to examine the combined impact of light and temperature variations on the growth and physiology of the biofuel candidate microalgal species Nannochloropsis oculata. The experiments were performed with algal cultures maintained at a constant 20u C versus a 15°C to 25°C diel temperature cycle, where light intensity also followed a diel cycle with a maximum irradiance of 1920 μmol photons m-2 s-1. No differences in algal growth (Chlorophyll a) were found between the two environmental regimes; however, the metabolic processes responded differently throughout the day to the change in environmental conditions. The variable temperature treatment resulted in greater damage to photosystem II due to the combined effect of strong light and high temperature. Cellular functions responded differently to conditions before midday as opposed to the afternoon, leading to strong hysteresis in dissolved oxygen concentration, quantum yield of photosystem II and net photosynthesis. Overnight metabolism performed differently, probably as a result of the temperature impact on respiration. Our photobioreactor matrix has produced novel insights into the physiological response of Nannochloropsis oculata to simulated environmental conditions. This information can be used to predict the effectiveness of deploying Nannochloropsis oculata in similar field conditions for commercial biofuel production. © 2014 Tamburic et al
    • …
    corecore