5 research outputs found

    Температурная зависимость фотопроводимости и оптические свойства тонких пленок In2O3, полученных методом автоволнового окисления

    No full text
    The influences of ultraviolet (UV) irradiation and temperature on the electrical and optical properties in In2O3 films obtained by autowave oxidation were measured experimentally. The film resistance changed slightly for temperatures from 300 to 95 K, and more noticeably when the temperature was further de- creased, measured in the dark. Under UV irradiation, the resistivity of the films at room temperature decreased sharply by 25% and from 300 to 95 K, and continued to decrease by 38% with a further decreasing temperature. When the UV source was turned off, the resistivity relaxed at a rate of 15 Ω/s for the first 30 seconds and 7 Ω/s for the remaining time. The transmittance decreased by 3.1% at a wavelength of 6.3 m after the irradiation ceased. The velocity of the relaxation transmittance was 0.006 %/s. The relaxation of the electrical resistance and transmittance after UV irradiation termination were similar. It was assumed that the dominant mechanism responsible for the change in the conductivity in the indium oxide films during UV irradiation was photoreductionЭкспериментально исследовано влияние ультрафиолетового (УФ) излучения и температуры на электрические и оптические свойства пленок In2O3, полученных методом автоволнового окисле- ния. При измерении в темноте сопротивление пленки менялось незначительно при температу- рах от 300 до 95 К и более заметно при дальнейшем уменьшении температуры. Под воздействием УФ–облучения удельное сопротивление пленок при комнатной температуре резко снизилось на 25 %, от 300 до 95 К, и продолжало снижаться до 38% с дальнейшим понижением темпера- туры. При отключении УФ–источника значение сопротивления релаксировало со скоростью 15 Ом/с в течение первых 30 секунд и 7 Ом/с в течение оставшегося времени. После прекращения облучения коэффициент пропускания снизился на 3,1% при длине волны 6,3 мкм. Скорость ре- лаксации коэффициента пропускания составила 0,006 %/с. Релаксации электрического сопротив- ления и коэффициента пропускания после прекращения УФ–облучения были одинаковыми. Пред- полагается, что доминирующим механизмом, ответственным за изменения проводимости в пленках оксида индия в процессе УФ-облучения, было фотовосстановлени

    Температурная зависимость фотопроводимости и оптические свойства тонких пленок In2O3, полученных методом автоволнового окисления

    No full text
    The influences of ultraviolet (UV) irradiation and temperature on the electrical and optical properties in In2O3 films obtained by autowave oxidation were measured experimentally. The film resistance changed slightly for temperatures from 300 to 95 K, and more noticeably when the temperature was further de- creased, measured in the dark. Under UV irradiation, the resistivity of the films at room temperature decreased sharply by 25% and from 300 to 95 K, and continued to decrease by 38% with a further decreasing temperature. When the UV source was turned off, the resistivity relaxed at a rate of 15 Ω/s for the first 30 seconds and 7 Ω/s for the remaining time. The transmittance decreased by 3.1% at a wavelength of 6.3 m after the irradiation ceased. The velocity of the relaxation transmittance was 0.006 %/s. The relaxation of the electrical resistance and transmittance after UV irradiation termination were similar. It was assumed that the dominant mechanism responsible for the change in the conductivity in the indium oxide films during UV irradiation was photoreductionЭкспериментально исследовано влияние ультрафиолетового (УФ) излучения и температуры на электрические и оптические свойства пленок In2O3, полученных методом автоволнового окисле- ния. При измерении в темноте сопротивление пленки менялось незначительно при температу- рах от 300 до 95 К и более заметно при дальнейшем уменьшении температуры. Под воздействием УФ–облучения удельное сопротивление пленок при комнатной температуре резко снизилось на 25 %, от 300 до 95 К, и продолжало снижаться до 38% с дальнейшим понижением темпера- туры. При отключении УФ–источника значение сопротивления релаксировало со скоростью 15 Ом/с в течение первых 30 секунд и 7 Ом/с в течение оставшегося времени. После прекращения облучения коэффициент пропускания снизился на 3,1% при длине волны 6,3 мкм. Скорость ре- лаксации коэффициента пропускания составила 0,006 %/с. Релаксации электрического сопротив- ления и коэффициента пропускания после прекращения УФ–облучения были одинаковыми. Пред- полагается, что доминирующим механизмом, ответственным за изменения проводимости в пленках оксида индия в процессе УФ-облучения, было фотовосстановлени

    Thermoelectric properties of low-cost transparent single wall carbon nanotube thin films obtained by vacuum filtration

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.The dispersions of semiconducting (sc-) and metallic (m-) SWCNTs with purity more than 98 and 86%, correspondingly, were obtained by using the aqueous two-phase extraction method. The unseparated (un-) SWCNTs contained ~3/4 of semiconducting and ~1/4 of metallic nanotubes. Thin films based on unseparated, semiconducting and metallic SWCNTs were prepared by vacuum filtration method. An Atomic Force Microscopy (AFM) and a Transmission Electronic Microscopy (TEM) were used to investigate the thin film microstructure. The thin SWCNT film transmittance was measured in the wavelength range of 300–1500 nm. Thermoelectric properties were carried out in the temperature range up to 200 °C. The largest Seebeck coefficient was observed for thin films based on semiconducting SWCNTs. The maximum value was 98 μV/K under the temperature of 170 °C. The lowest resistivity was 7.5·10−4·Ohm·cm at room temperature for thin un-SWCNT films. The power factor for m-SWCNT and un-SWCNT films was 47 and 213 μWm−1 K−2, correspondingly, at room temperature and 74 and 54 μWm−1 K−2 at 200 °C, respectively. For a thin sc-SWCNT film the maximum power factor was 2.8 μWm−1 K−2 at 160 °C. The un-SWCNT film thermal conductivity coefficient was 5.63 and 3.64Wm−1 K−1 and a thermoelectric figure of merit was 0.011 and 0.016 at temperatures of 23 and 50 °C, respectively

    А New Method of Obtaining Transparent Conducting Films of Indium (III) Oxide and Indium-Tin Oxide

    Get PDF
    В работе получены седиментационно устойчивые золи гидроксидов индия (III) и олова (IV) методом анионообменного синтеза, заключающимся в обменной реакции между ОН‑ионами анионообменной смолы и анионами металлосодержащих растворов. Синтезированные гидрозоли использованы для получения проводящих пленок оксида индия (III) In2O3 и оксида индия, легированного оловом In2O3:Sn, с поверхностным сопротивлением 4 кОм/кв, толщинами 200– 500 нм и прозрачностью более 85 %. Подобраны режимы нанесения прекурсоров на стеклянные подложки модифицированным спрей-методом и методом центрифугирования. Пленки исследованы с помощью РФА, СЭМ, оптической микроскопии и спектрофотометрииIn the work, sedimentation-stable sols of indium (III) and tin (IV) hydroxides were obtained by the Anion Resin Exchange Precipitation, which consists of the exchange reaction between the OH ions of the anion exchange resin and the anions of metal-containing solutions. The synthesized hydrosols were used to obtain conducting films of indium (III) In2O3 oxide and indium oxide doped with Tin In2O3: Sn, with a surface resistance of 4 kOhm/sq, thicknesses of 200–500 nm and a transparency of more than 85 %. The modes of applying precursors to glass substrates by the modified spray method and centrifugation method are selected. Films were studied using XRD, SEM, optical microscopy and spectrophotometr

    Low Cost Embedded Copper Mesh Based on Cracked Template for Highly Durability Transparent EMI Shielding Films

    No full text
    Embedded copper mesh coatings with low sheet resistance and high transparency were formed using a low-cost Cu seed mesh obtained with a magnetron sputtering on a cracked template, and subsequent operations electroplating and embedding in a photocurable resin layer. The influence of the mesh size on the optoelectric characteristics and the electromagnetic shielding efficiency in a wide frequency range is considered. In optimizing the coating properties, a shielding efficiency of 49.38 dB at a frequency of 1 GHz, with integral optical transparency in the visible range of 84.3%, was obtained. Embedded Cu meshes have been shown to be highly bending stable and have excellent adhesion strength. The combination of properties and economic costs for the formation of coatings indicates their high prospects for practical use in shielding transparent objects, such as windows and computer monitors
    corecore