5 research outputs found

    Table2_Feasibility and safety of cavotricuspid isthmus ablation using exclusive intracardiac echocardiography guidance: a proof-of-concept, observational trial.docx

    No full text
    IntroductionCatheter ablation is the preferred treatment for typical atrial flutter (AFl), but it can be challenging due to anatomical abnormalities. The use of 3D electroanatomical mapping systems (EAMS) has reduced fluoroscopy exposure during AFl ablation. Intracardiac echocardiography (ICE) has also shown benefits in reducing radiation exposure during AFl ablation. However, there is a lack of evidence on the feasibility of ICE-guided, zero-fluoroscopy AFl ablation without the use of EAMS.MethodsIn this prospective study, we enrolled 80 patients with CTI-dependent AFl. The first 40 patients underwent standard fluoroscopy + ICE-guided ablation (Standard ICE group), while the other 40 patients underwent zero-fluoroscopy ablation using only ICE (Zero ICE group). Procedure outcomes, including acute success, procedure time, fluoroscopy time, radiation dose, and complications, were compared between the groups.ResultsThe acute success rate was 100% in both groups. Out of the 40 cases, the zero-fluoroscopy strategy was successfully implemented in 39 cases (97.5%) in the Zero ICE group. There were no significant differences in procedure time [55.5 (46.5; 66.8) min vs. 51.5 (44.0; 65.5), p = 0.50] and puncture to first ablation time [18 (13.5; 23) min vs. 19 (15; 23.5) min, p = 0.50] between the groups. The Zero ICE group had significantly lower fluoroscopy time [57 (36.3; 90) sec vs. 0 (0; 0) sec, p ConclusionOur study suggests that zero-fluoroscopy CTI ablation guided solely by ICE for AFl is feasible and safe. Further investigation is warranted for broader validation.</p

    Table1_Feasibility and safety of cavotricuspid isthmus ablation using exclusive intracardiac echocardiography guidance: a proof-of-concept, observational trial.docx

    No full text
    IntroductionCatheter ablation is the preferred treatment for typical atrial flutter (AFl), but it can be challenging due to anatomical abnormalities. The use of 3D electroanatomical mapping systems (EAMS) has reduced fluoroscopy exposure during AFl ablation. Intracardiac echocardiography (ICE) has also shown benefits in reducing radiation exposure during AFl ablation. However, there is a lack of evidence on the feasibility of ICE-guided, zero-fluoroscopy AFl ablation without the use of EAMS.MethodsIn this prospective study, we enrolled 80 patients with CTI-dependent AFl. The first 40 patients underwent standard fluoroscopy + ICE-guided ablation (Standard ICE group), while the other 40 patients underwent zero-fluoroscopy ablation using only ICE (Zero ICE group). Procedure outcomes, including acute success, procedure time, fluoroscopy time, radiation dose, and complications, were compared between the groups.ResultsThe acute success rate was 100% in both groups. Out of the 40 cases, the zero-fluoroscopy strategy was successfully implemented in 39 cases (97.5%) in the Zero ICE group. There were no significant differences in procedure time [55.5 (46.5; 66.8) min vs. 51.5 (44.0; 65.5), p = 0.50] and puncture to first ablation time [18 (13.5; 23) min vs. 19 (15; 23.5) min, p = 0.50] between the groups. The Zero ICE group had significantly lower fluoroscopy time [57 (36.3; 90) sec vs. 0 (0; 0) sec, p ConclusionOur study suggests that zero-fluoroscopy CTI ablation guided solely by ICE for AFl is feasible and safe. Further investigation is warranted for broader validation.</p

    Video1_Feasibility and safety of cavotricuspid isthmus ablation using exclusive intracardiac echocardiography guidance: a proof-of-concept, observational trial.avi

    No full text
    IntroductionCatheter ablation is the preferred treatment for typical atrial flutter (AFl), but it can be challenging due to anatomical abnormalities. The use of 3D electroanatomical mapping systems (EAMS) has reduced fluoroscopy exposure during AFl ablation. Intracardiac echocardiography (ICE) has also shown benefits in reducing radiation exposure during AFl ablation. However, there is a lack of evidence on the feasibility of ICE-guided, zero-fluoroscopy AFl ablation without the use of EAMS.MethodsIn this prospective study, we enrolled 80 patients with CTI-dependent AFl. The first 40 patients underwent standard fluoroscopy + ICE-guided ablation (Standard ICE group), while the other 40 patients underwent zero-fluoroscopy ablation using only ICE (Zero ICE group). Procedure outcomes, including acute success, procedure time, fluoroscopy time, radiation dose, and complications, were compared between the groups.ResultsThe acute success rate was 100% in both groups. Out of the 40 cases, the zero-fluoroscopy strategy was successfully implemented in 39 cases (97.5%) in the Zero ICE group. There were no significant differences in procedure time [55.5 (46.5; 66.8) min vs. 51.5 (44.0; 65.5), p = 0.50] and puncture to first ablation time [18 (13.5; 23) min vs. 19 (15; 23.5) min, p = 0.50] between the groups. The Zero ICE group had significantly lower fluoroscopy time [57 (36.3; 90) sec vs. 0 (0; 0) sec, p ConclusionOur study suggests that zero-fluoroscopy CTI ablation guided solely by ICE for AFl is feasible and safe. Further investigation is warranted for broader validation.</p

    <i>In Vitro</i> Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent

    No full text
    <div><p>Purpose</p><p>MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA).</p><p>Materials and Methods</p><p>The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4.</p><p>Results</p><p>The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s<sup>-1</sup>mM<sup>-1</sup> and 18.1, 16.7, and 13.5 s<sup>-1</sup>mM<sup>-1</sup>, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s<sup>-1</sup>mM<sup>-1</sup>, respectively.</p><p>Conclusions</p><p>The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end.</p></div
    corecore