13 research outputs found

    Interfacial Fe segregation and its influence on magnetic properties of CoFeB/MgFeO multilayers

    Full text link
    We investigated the effect of Fe segregated from partially Fe-substituted MgO (MgFeO) on the magnetic properties of CoFeB/MgFeO multilayers. X-ray photoelectron spectroscopy (XPS) as well as magnetic measurements revealed that the segregated Fe was reduced to metal and exhibited ferromagnetism at the CoFeB/MgFeO interface. The CoFeB/MgFeO multilayer showed more than 2-fold enhancement in perpendicular magnetic anisotropy (PMA) energy density compared with a standard CoFeB/MgO multilayer. The PMA energy density was further enhanced by inserting an ultrathin MgO layer in between CoFeB and MgFeO layers. Ferromagnetic resonance measurement also revealed a remarkable reduction of magnetic damping in the CoFeB/MgFeO multilayers.Comment: 15 pages, 5 figure

    Enhancement in the interfacial perpendicular magnetic anisotropy and the voltage-controlled magnetic anisotropy by heavy metal doping at the Fe/MgO interface

    No full text
    We investigated the influence of heavy metal doping at the Fe/MgO interface on the interfacial perpendicular magnetic anisotropy (PMA) and the voltage-controlled magnetic anisotropy (VCMA) in magnetic tunnel junctions prepared by sputtering-based deposition. The interfacial PMA was increased by tungsten doping and a maximum intrinsic interfacial PMA energy, Ki,0 of 2.0 mJ/m2 was obtained. Ir doping led to a large increase in the VCMA coefficient by a factor of 4.7 compared with that for the standard Fe/MgO interface. The developed technique provides an effective approach to enhancing the interfacial PMA and VCMA properties in the development of voltage-controlled spintronic devices

    Highly Efficient Aggregation-Induced Room-Temperature Phosphorescence with Extremely Large Stokes Shift Emitted from Trinuclear Gold(I) Complex Crystals

    No full text
    Highly efficient (≈75% quantum yield), aggregation-induced phosphorescence is reported. The phosphorescence is emitted at room temperature and in the presence of air from crystals of trinuclear Au(I) complexes, accompanied by an extremely large Stokes shift of 2.2 × 104 cm−1 (450 nm). The mechanism of the aggregation-induced room-temperature phosphorescence from the Au complex crystals was investigated in terms of the crystal packing structure and the primary structure of the molecules. It was found that two kinds of intermolecular interactions occurred in the crystals, and that these multiple dual-mode intermolecular interactions in the crystals play a crucial role in the in-air room-temperature phosphorescence of the trinuclear Au(I) complexes
    corecore