43 research outputs found

    On the choice of methodology for evaluating dose-rate effects on radiation-related cancer risks

    Full text link
    Recently, several compilations of individual radiation epidemiology study results have aimed to obtain direct evidence on the magnitudes of dose-rate effects on radiation-related cancer risks. These compilations have relied on meta-analyses of ratios of risks from low dose-rate studies and matched risks from the solid cancer Excess Relative Risk models fitted to the acutely exposed Japanese A-bomb cohort. The purpose here is to demonstrate how choices of methodology for evaluating dose-rate effects on radiation-related cancer risks may influence the results reported for dose-rate effects. The current analysis is intended to address methodological issues and does not imply that the authors recommend a particular value for the dose and dose-rate effectiveness factor. A set of 22 results from one recent published study has been adopted here as a test set of data for applying the many different methods described here, that nearly all produced highly consistent results. Some recently voiced concerns, involving the recalling of the well-known theoretical point—the ratio of two normal random variables has a theoretically unbounded variance—that could potentially cause issues, are shown to be unfounded when aimed at the published work cited and examined in detail here. In the calculation of dose-rate effects for radiation protection purposes, it is recommended that meta-estimators should retain the full epidemiological and dosimetric matching information between the risks from the individual low dose-rate studies and the acutely exposed A-bomb cohort and that a regression approach can be considered as a useful alternative to current approaches

    Risk of stomach cancer incidence in a cohort of Mayak PA workers occupationally exposed to ionizing radiation.

    No full text
    Stomach cancer is a widespread health condition associated with environmental and genetic factors. Contribution of ionizing radiation to stomach cancer etiology is not sufficiently studied. This study was aimed to assess an association of the stomach cancer incidence risk with doses from occupational radiation exposure in a cohort of workers hired at main Mayak production association facilities in 1948-1982 taking into account non-radiation factors including digestive disorders. The study cohort comprised 22,377 individuals and by 31.12.2013 343 stomach cancer diagnoses had been reported among the cohort members. Occupational stomach absorbed doses were provided by the Mayak Worker Dosimetry System- 2008 (MWDS-2008) for external gamma ray exposure and by the Mayak Worker Dosimetry System- 2013 (MWDS-2013) for internal exposure to plutonium. Excess relative risks (ERR) per Gy for stomach cancer were estimated using the Poisson's regression. Analyses were run using the AMFIT module of the EPICURE software. The stomach cancer incidence risk in the study cohort was found to be significantly associated with the stomach absorbed dose of gamma rays: ERR/Gy = 0.19 (95% CI: 0.01, 0.44) with a 0 year lag, and ERR/Gy = 0.20 (95% CI: 0.01, 0.45) with a 5 year lag. To estimate the baseline risk, sex, attained age, smoking status and alcohol consumption, chronic diseases (peptic ulcer, gastritis and duodenitis) were taken into account. No modifications of the radiogenic risk by non-radiation factors were found in the study worker cohort. No association of the stomach cancer incidence risk with internal exposure to incorporated plutonium was observed

    Dose rate effect on mortality from ischemic heart disease in the cohort of Russian Mayak Production Association workers

    No full text
    Abstract For improvement of the radiation protection system it is crucial to know the factors that modify the radiation dose–response relationship. One of such key factors is the ionizing radiation dose rate. There are, however, very few studies that examine the impact of the dose rate on radiogenic risks observed in human cohorts exposed to radiation at various dose rates. Here we investigated the impact of the dose rate (in terms of the recorded annual dose) on ischemic heart disease (IHD) mortality among Russian nuclear workers chronically exposed to radiation. We observed significantly increased excess relative risks (ERR) of IHD mortality per unit of external gamma-ray absorbed dose accumulated at higher dose rates (0.005–0.050 Gy/year). The present findings provide evidence for the association between radiation dose rate and ERRs of IHD mortality in occupationally chronically exposed workers per unit total dose. IHD mortality risk estimates considerably increased with increasing duration of uninterrupted radiation exposure at high rates. The present findings are consistent with other studies and can contribute to the scientific basis for recommendations on the radiation protection system

    Risk of Cataract Incidence in a Cohort of Mayak PA Workers following Chronic Occupational Radiation Exposure

    No full text
    <div><p>This is the first study of cataract incidence in a cohort of Mayak Production Association workers first employed at one of the main facilities in 1948–1982 and followed up till the end of 2008 (22,377 workers). Principal advantages of the study are the large size of the cohort, long-term follow-up and sufficient statistical power, available results of annual eye examinations over the entire follow-up period and detailed information on non-radiation confounders. Individual measured doses from external γ-rays and neutrons used in the analyses were provided by the Mayak Worker Dosimetry System 2008 (MWDS-2008). Relative risk (RR) and excess relative risk (ERR) per unit dose (Gy) were calculated based on maximum likelihood using the AMFIT module of the EPICURE software. The RR of cataract incidence was found to be the highest in workers exposed at doses above 2.0 Gy. A significant linear association of cataract incidence with cumulative dose from external γ-rays was found with ERR/Gy equal to 0.28 (95% confidence intervals: 0.20, 0.37). The results obtained varied slightly with inclusion of additional adjustments for non-radiation factors (smoking index, hypertension, glaucoma and body mass index). Adjusting for the dose from neutrons gave a considerable increase in ERR/Gy for cataract incidence.</p></div
    corecore