2 research outputs found

    Jabuticaba skin extracts: phenolic compounds and antibacterial activity

    No full text
    <div><p>Abstract The phenolic compounds from various extracts of jabuticaba skin powder (JSP) were characterized in this study, and the antibacterial activity assessed. The phenolic compounds were extracted from the JSP using four methods: a) acetone extraction - 1 g JSP: 10 mL 70% acetone, resting for 2 hours; b) aqueous extract - 1 g JSP: 15 mL water, under agitation; c) ethanolic extract - 1 g JSP: 15 mL acidified ethanol, under agitation; and d) methanolic extract - 1 g JSP: 50 mL 50% methanol, under reflux. The antibacterial activity was evaluated by the agar diffusion assay, using Escherichia coli ATCC 11229, Salmonella choleraesuis ATCC 6539, Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 6538 and Listeria monocytogenes ATCC 19117. The ethanolic and methanolic extracts showed the highest levels of phenolic compounds, especially of cyanidin chloride, catechin and epicatechin. The extracts did not inhibit the growth of Escherichia coli and Salmonella choleraesuis, but inhibited 30% of the growth of Pseudomonas aeruginosa with an extract concentration of 250 µg mL-1. Against Staphylococcus aureus and Listeria monocytogenes the highest inhibitory effect observed was 41.8% for the ethanolic extract, followed by 36% inhibition by the methanolic extract, thus revealing the potential of these extracts as possible alternatives for use in the food and/or pharmaceutical industries.</p></div

    Modifications in the methods to extract pectin from cv. “Pedro Sato” guavas during ripening

    No full text
    <div><p>Abstract Guava is a highly perishable fruit due to its intense metabolism during ripening, with a shelf life of up to five days at room temperature. The loss of firmness during ripening is caused by the activity of hydrolytic enzymes that promote dissolution of the pectin constituents of the cell wall. Although guava is considered to be rich in pectin, the amounts reported in the literature do not exceed 2.4%, a content indicating it is not responsible for the firmness of guava. The aim of this study was to extract pectin from the guava pulp during 7 days of ripening by two methods (ethanol and EDTA extraction) and suggest modifications in the methods by adding to the extraction residue, cellulase and pectinase to degrade the cell wall structure of the fruit and obtain larger amounts of pectin, which would imply the participation of pectin in the maintenance of fruit firmness. It was possible to infer there were no differences in the pectin levels extracted by the two methods, due to sugar contamination. As from the new stage in the execution by the two methods, the extraction was more efficient: 9.10% of pectin with EDTA and 7.63% with ethanol. The pectin contents found were higher than those mentioned in the literature, better explaining their responsibility in fruit firmness.</p></div
    corecore